Cite Them Right 11th edition - Harvard

Lötsch, J. und Mayer, B. (2022) A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery [cd], Bio Med Informatics. Basel: MDPI. doi:10.3390/biomedinformatics2040034.

Chicago Manual of Style 17th edition (full note)

Lötsch, Jörn, und Benjamin Mayer. A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery. Cd. Bio Med Informatics. Basel: MDPI, [2022?], Basel: MDPI, [2022?]. https://doi.org/10.3390/biomedinformatics2040034.

American Psychological Association 7th edition

Lötsch, J., & Mayer, B. (ca. 2022). A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery [Cd]. In Bio Med Informatics. MDPI. https://doi.org/10.3390/biomedinformatics2040034

Modern Language Association 9th edition

Lötsch, J., und B. Mayer. „A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery“. Bio Med Informatics, cd, MDPI, 2022, https://doi.org/10.3390/biomedinformatics2040034.

ISO-690 (author-date, Deutsch)

LÖTSCH, Jörn und Benjamin MAYER, 2022. A biomedical case study showing that tuning random forests can fundamentally change the interpretation of supervised data structure exploration aimed at knowledge discovery. Basel: MDPI

Achtung: Diese Zitate sind unter Umständen nicht zu 100% korrekt.