Treffer: SIMD code generation in data-parallel programming

Title:
SIMD code generation in data-parallel programming
Authors:
Contributors:
Wilhelm, Reinhard
Publication Year:
2009
Collection:
SciDok - Der Wissenschaftsserver der UdS (Universität des Saarlandes)
Document Type:
Dissertation doctoral or postdoctoral thesis
Language:
English
Relation:
hdl:20.500.11880/26010
DOI:
10.22028/D291-25954
Rights:
openAccess ; Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt
Accession Number:
edsbas.D145DD97
Database:
BASE

Weitere Informationen

Today';s desktop PCs feature a variety of parallel processing units. Developing applications that exploit this parallelism is a demanding task, and a programmer has to obtain detailed knowledge about the hardware for efficient implementation. CGiS is a data-parallel programming language providing a unified abstraction for two parallel processing units: graphics processing units (GPUs) and the vector processing units of CPUs. The CGiS compiler framework fully virtualizes the differences in capability and accessibility by mapping an abstract data-parallel programming model on those targets. The applicability of CGiS for GPUs has been shown in previous work; this work focuses on applying the abstract programming model of CGiS to CPUs with SIMD (Single Instruction Multiple Data) instruction sets. We have identified, adapted and implemented a set of program analyses to expose and access the available parallelism. The code generation phase is based on selected optimization algorithms tailored to SIMD code generation. Via code generation profiles, it is possible to adapt the code generation strategy to different target architectures. To assess the effectiveness of our approach, we have implemented backends for the two most widespread SIMD instruction sets, namely Intel';s Streaming SIMD Extensions and Freescale';s AltiVec. Additionally, we integrated a prototypical backend for the Cell Broadband Engine as an example for a multi-core architecture. Our experimental results show excellent average performance gains by a factor of 3 compared to standard scalar C++ implementations and underline the viability of this approach: real-world applications can be implemented easily with CGiS and result in efficient code. ; Parallelverarbeitung wird heutzutage in handelsüblichen PCs von einer Reihe verschiedener Komponenten unterstützt. Grafikprozessoren (GPUs) und Vektoreinheiten in CPUs sind zwei dieser Komponenten. Da die Entwicklung von Anwendungen, die diese Parallelität nutzen, eine anspruchsvolle Aufgabe ist, muss sich ein ...