Treffer: Compiler optimizations for industrial unstructured mesh cfd applications on gpus,” in Accepted for publication at Languages and Compilers for Parallel Computing Workshop

Title:
Compiler optimizations for industrial unstructured mesh cfd applications on gpus,” in Accepted for publication at Languages and Compilers for Parallel Computing Workshop
Contributors:
The Pennsylvania State University CiteSeerX Archives
Publication Year:
2012
Collection:
CiteSeerX
Document Type:
Fachzeitschrift text
File Description:
application/pdf
Language:
English
Rights:
Metadata may be used without restrictions as long as the oai identifier remains attached to it.
Accession Number:
edsbas.9498AB
Database:
BASE

Weitere Informationen

Graphical Processing Units (GPUs) have shown acceleration factors over multicores for structured mesh-based Computational Fluid Dynamics (CFD). However, the value remains unclear for dynamic and irregular applications. Our motivating example is HYDRA, an unstructured mesh application used in production at Rolls-Royce for the simulation of turbomachinery components of jet engines. We describe three techniques for GPU optimization of unstructured mesh applications: a technique able to split a highly complex loop into simpler loops, a kernel specific alternative code synthesis, and configuration parameter tuning. Using these optimizations systematically on HYDRA improves the GPU performance relative to the multicore CPU. We show how these optimizations can be automated in a compiler, through user annotations. Performance analysis of a large number of complex loops enables us to study the relationship between optimizations and resource requirements of loops, in terms of registers and shared memory, which directly affect the loop performance.