Treffer: A comparison of a one-dimensional finite element method and the transfer matrix method for the computation of wind music instrument impedance

Title:
A comparison of a one-dimensional finite element method and the transfer matrix method for the computation of wind music instrument impedance
Contributors:
Advanced 3D Numerical Modeling in Geophysics (Magique 3D), Laboratoire de Mathématiques et de leurs Applications Pau (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Openwind
Source:
ISSN: 1610-1928.
Publisher Information:
HAL CCSD
Hirzel Verlag
Publication Year:
2019
Collection:
Université de Rennes 1: Publications scientifiques (HAL)
Document Type:
Fachzeitschrift article in journal/newspaper
Language:
English
DOI:
10.3813/AAA.919364
Rights:
info:eu-repo/semantics/OpenAccess
Accession Number:
edsbas.264FCB90
Database:
BASE

Weitere Informationen

International audience ; This work presents a computation tool for the calculation of wind instrument input impedance in the context of linear planar wave propagation with visco-thermal losses. The originality of the approach lies in the usage of a specific and simple 1D finite element method (FEM). The popular Transfer Matrix Method (TMM) is also recalled and a seamless formulation is proposed which unifies the cases cylinders vs. cones. Visco-thermal losses, which are natural dissipation in the system, are not exactly taken into account by this method when arbitrary shapes are considered. The introduction of an equivalent radius leads to an approximation that we quantify using the FEM method. The equation actually solved by the TMM in this case is exhibited. The accuracy of the two methods (FEM and TMM) and the associated computation times are assessed and compared. Although the TMM is more efficient in lossless cases and for lossy cylinders, the FEM is shown to be more efficient when targeting a specific precision in the realistic case of a lossy trumpet. Some additional features also exhibit the robustness and flexibility of the FEM over the TMM. All the results of this article are computed using the open-source python toolbox OpenWind.