Treffer: Generalized Isotonic Regression.
Weitere Informationen
We present a new computational and statistical approach for fitting isotonic models under convex differentiable loss functions through recursive partitioning. Models along the partitioning path are also isotonic and can be viewed as regularized solutions to the problem. Our approach generalizes and subsumes the well-known work of Barlow and Brunk on fitting isotonic regressions subject to specially structured loss functions, and expands the range of loss functions that can be used (e.g., adding Huber loss for robust regression). This is accomplished through an algorithmic adjustment to a recursive partitioning approach recently developed for solving large-scale ł2-loss isotonic regression problems. We prove that the new algorithm solves the generalized problem while maintaining the favorable computational and statistical properties of thel2algorithm. The results are demonstrated on both real and synthetic data in two settings: fitting count data using negative Poisson log-likelihood loss, and fitting robust isotonic regressions using Huber loss. Proofs of theorems and a MATLAB-based software package implementing our algorithm are available in the online supplementary materials. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Computational & Graphical Statistics is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)