Treffer: Parallel 3D Multigrid Methods on the STI Cell BE Architecture.
Weitere Informationen
The STI Cell Broadband Engine (BE) is a highly capable heterogeneous multicore processor with large bandwidth and computing power perfectly suited for numerical simulation. However, all performance benefits come at the price of productivity since more responsibility is put to the programmer. In particular, programming with the IBM Cell SDK is hampered by not only taking care of a parallel decomposition of the problem but also of managing all data transfers and organizing all computations in a performance-beneficial manner. While raising complexity of program development, this approach enables efficient utilization of available resources. In the present work we investigate the potential and the performance behavior of Cell΄s parallel cores for a resource-demanding and bandwidth-bound multigrid solver for a three-dimensional Poisson problem. The chosen multigrid method based on a parallel Gauβ-Seidel and Jacobi smoothers combines mathematical optimality with a high degree of inherent parallelism. We investigate dedicated code optimization strategies on the Cell platform and evaluate associated performance benefits by a comprehensive analysis. Our results show that the Cell BE platform can give tremendous benefits for numerical simulation based on well-structured data. However, it is inescapable that isolated, vendor-specific, but performance-optimal programming approaches need to be replaced by portable and generic concepts like OpenCL – maybe at the price of performance loss. [ABSTRACT FROM AUTHOR]
Copyright of Facing the Multicore-challenge is the property of Springer Nature / Books and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)