Treffer: Agregaların Temel Şekil Özellikleri Kullanılarak Yapay Sinir Ağları Yardımıyla Sınıflandırılması.
Weitere Informationen
In this paper, the aim is to classify natural or crushed aggregates by using concrete and asphalt mixes through Artificial Neural Networks. For classification, it was a used the feature vector which was calculated by using digital image processing techniques. Of the five different type coarse aggregates images were taken with 45° and 90° by a 10 Mp (Sony DSC-R1) and 7.1 Mp (Canon EOS 350D) camera. Aggregates images were processed and analyzed by using MATLAB Image Processing and Neural Network Toolbox. Classification process was made with totally 18 feature vectors, which is 9 vectors each angles, by neural network. Results showed image processing and neural networks which are important methods for founding shape parameters and classification of aggregates, and performance, cost and time consuming factors of automation systems in aggregate sources will be effective with these methods. [ABSTRACT FROM AUTHOR]
Bu çalışmada, asfalt ve beton karışımlarında kullanılan doğal ve kırma taş agregaların görüntü işleme teknikleri kullanılarak elde edilen tanımlayıcı vektörlerinin yapay sinir ağları yardımıyla sınıflandırılması amaçlanmaktadır. Farklı şekil özelliklerine sahip (yassı, uzun, yuvarlak, köşeli, küre) 5 iri agrega türünün 45° ve 90° lik açılardaki 7.1 Mp (Canon EOS 350D) ve 10 Mp (Sony DSC-R1) çözünürlüğe sahip 2 farklı dijital fotoğraf makinesinden elde edilen görüntüleri, MATLAB programının Görüntü İşleme Araç kutusu kullanılarak ön işlemlerden geçirilmiştir. Agregalara ait her iki açı için ayrı ayrı 9 ve toplam da 18 öznitelik vektörü bulunarak yapay sinir ağları yardımıyla sınıflandırma işlemi gerçekleştirilmiştir. Sonuçlar, görüntü işleme ve yapay sinir ağlarının agrega özelliklerinin tespiti ve ayırımı için etkili yöntemler olduğunu göstermiş ve agrega ocaklarındaki otomasyon sistemlerin bu tarz yaklaşımlar ile verim, maliyet ve zaman faktörlerini etkileyeceğini ortaya koymuştur. [ABSTRACT FROM AUTHOR]
Copyright of Pamukkale University Journal of Engineering Sciences is the property of Pamukkale University Journal of Engineering Sciences (PAJES) and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)