Treffer: A high-throughput framework and database for twisted 2D van der Waals bilayers.
Weitere Informationen
Twisted two-dimensional van der Waals heterostructures provide a fertile ground for tailoring electronic and structural properties. However, their vast configurational space poses challenges for systematic study. Here, we introduce SAMBA, an open-source, high-throughput Python workflow that automates the generation, simulation, and analysis of twisted bilayers. Using the coincidence lattice method, we generate a comprehensive set of over 18,000 quasi-commensurable homo- and heterobilayer structures based on 63 experimentally reported monolayers, and perform DFT simulations on a growing subset. The resulting database includes symmetry, interlayer energetics, band alignment, and charge transfer. A detailed case study on graphene-jacutingaite illustrates the framework's capabilities. This platform offers a robust foundation for data-driven discovery and the rational design of 2D materials with tunable properties. [ABSTRACT FROM AUTHOR]
Copyright of NPJ Computational Materials is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)