Treffer: Integrating Artificial Intelligence in Higher Education to Enhance Teaching and Learning.
Weitere Informationen
The integration of artificial intelligence (AI) in higher education represents a transformative shift in the way teaching and learning are approached, offering unprecedented opportunities to enhance educational outcomes. One significant issue is the potential for bias in AI algorithms, which can perpetuate existing inequalities if not carefully managed. The objective of this study is to explore and evaluate the integration of AI in higher education to enhance teaching and learning processes. The study aims to identify the most effective AI tools and strategies for improving educational outcomes, assess their impact on student engagement and achievement, and provide actionable recommendations for educators and institutions. To effectively assess the integration of AI in higher education, a multifaceted data collection approach is essential. To ensure the successful integration of AI tools in higher education, a structured implementation plan is crucial. Enhancing teaching and learning involves a comprehensive approach that includes meticulous data collection, rigorous data analysis, strategic implementation and continuous improvement. The implementation phase requires thoughtful planning and execution, with a focus on refining AI systems based on feedback and performance metrics to ensure they effectively support educational goals. The findings show that AI integration in education has improved average grades to 88%, increased retention rates to 85%, and achieved 92% in content customisation and implementation using Python software. The future scope for integrating AI in higher education includes developing advanced AI tools that offer personalized and adaptive learning experiences, enhancing predictive analytics for student performance and retention, and fostering innovative pedagogical approaches through AI‐driven insights. [ABSTRACT FROM AUTHOR]
Copyright of Computer Applications in Engineering Education is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)