Treffer: Validation and Verification of Novel Three-Dimensional Crack Growth Simulation Software GmshCrack3D.
Weitere Informationen
The accurate prediction of crack initiation and propagation is essential for assessing the structural integrity of mechanically joined components and other complex assemblies. To overcome the limitations of existing finite element tools, a modular Python framework has been developed to automate three-dimensional crack growth simulations. The program combines geometric reconstruction, adaptive remeshing, and the numerical evaluation of fracture mechanics parameters within a single, fully automated workflow. The framework builds on open-source components and remains solver-independent, enabling straightforward integration with commercial or research finite element codes. A dedicated sequence of modules performs all required steps, from mesh separation and crack insertion to local submodeling, stress and displacement mapping, and iterative crack-front update, without manual interaction. The methodology was verified using a mini-compact tension (Mini-CT) specimen as a benchmark case. The numerical results demonstrate the accurate reproduction of stress intensity factors and energy release rates while achieving high computational efficiency through localized refinement. The developed approach provides a robust basis for crack growth simulations of geometrically complex or residual stress-affected structures. Its high degree of automation and flexibility makes it particularly suited for analyzing cracks in clinched and riveted joints, supporting the predictive design and durability assessment of joined lightweight structures. [ABSTRACT FROM AUTHOR]
Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)