Treffer: Construction and optimization of quantum modular exponentiation circuits based on the V gate.

Title:
Construction and optimization of quantum modular exponentiation circuits based on the V gate.
Source:
Quantum Information Processing; Nov2025, Vol. 24 Issue 11, p1-28, 28p
Database:
Complementary Index

Weitere Informationen

As one of the fundamental quantum circuits widely used today, the quantum modular exponentiation circuit has been applied in various quantum algorithms, including Shor’s algorithm. However, due to the limitations of quantum computers in the noisy intermediate-scale quantum (NISQ) era, excessive circuit depth and high quantum cost can lead to significant noise accumulation, thereby increasing the likelihood of computational errors. Consequently, reducing both circuit depth and quantum cost is essential. To address these issues, this work proposes two modular exponentiation circuits based on the V gate, with further improvements introduced through the use of zero resets. Comparative analysis shows that both proposed circuits achieve reductions in circuit depth and quantum cost within their respective domains, while preserving general applicability. Furthermore, by relaxing the constraint of circuit reversibility, the improved designs achieve an additional two to three fold reduction in circuit depth and quantum cost. Finally, the correctness of the proposed circuits was verified through experimental implementation using the Qiskit package in Python. [ABSTRACT FROM AUTHOR]

Copyright of Quantum Information Processing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)