Treffer: Combining Infrared Thermography with Computer Vision Towards Automatic Detection and Localization of Air Leaks.

Title:
Combining Infrared Thermography with Computer Vision Towards Automatic Detection and Localization of Air Leaks.
Source:
Sensors (14248220); Jun2025, Vol. 25 Issue 11, p3272, 18p
Database:
Complementary Index

Weitere Informationen

This paper proposes an automated system integrating infrared thermography (IRT) and computer vision for air leak detection and localization in end-of-line (EOL) testing stations. This system consists of (1) a leak tester for detection and quantification of leaks, (2) an infrared camera for real-time thermal image acquisition; and (3) an algorithm for automatic leak localization. The python-based algorithm acquires thermal frames from the camera's streaming video, identifies potential leak regions by selecting a region of interest, mitigates environmental interferences via image processing, and pinpoints leaks by employing pixel intensity thresholding. A closed circuit with an embedded leak system simulated relevant leakage scenarios, varying leak apertures (ranging from 0.25 to 3 mm), and camera–leak system distances (0.2 and 1 m). Results confirmed that (1) the leak tester effectively detected and quantified leaks, with larger apertures generating higher leak rates; (2) the IRT performance was highly dependent on leak aperture and camera–leak system distance, confirming that shorter distances improve localization accuracy; and (3) the algorithm localized all leaks in both lab and industrial environments, regardless of the camera–leak system distance, mostly achieving accuracies higher than 0.7. Overall, the combined system demonstrated great potential for long-term implementation in EOL leakage stations in the manufacturing sector, offering an effective and cost-effective alternative for manual inspections. [ABSTRACT FROM AUTHOR]

Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)