Treffer: Calibrated explanations for regression.
Weitere Informationen
Artificial Intelligence (AI) methods are an integral part of modern decision support systems. The best-performing predictive models used in AI-based decision support systems lack transparency. Explainable Artificial Intelligence (XAI) aims to create AI systems that can explain their rationale to human users. Local explanations in XAI can provide information about the causes of individual predictions in terms of feature importance. However, a critical drawback of existing local explanation methods is their inability to quantify the uncertainty associated with a feature’s importance. This paper introduces an extension of a feature importance explanation method, Calibrated Explanations, previously only supporting classification, with support for standard regression and probabilistic regression, i.e., the probability that the target is below an arbitrary threshold. The extension for regression keeps all the benefits of Calibrated Explanations, such as calibration of the prediction from the underlying model with confidence intervals, uncertainty quantification of feature importance, and allows both factual and counterfactual explanations. Calibrated Explanations for regression provides fast, reliable, stable, and robust explanations. Calibrated Explanations for probabilistic regression provides an entirely new way of creating probabilistic explanations from any ordinary regression model, allowing dynamic selection of thresholds. The method is model agnostic with easily understood conditional rules. An implementation in Python is freely available on GitHub and for installation using both <monospace>pip</monospace> and <monospace>conda</monospace>, making the results in this paper easily replicable. [ABSTRACT FROM AUTHOR]
Copyright of Machine Learning is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)