Treffer: Selecting robust features for machine-learning applications using multidata causal discovery.

Title:
Selecting robust features for machine-learning applications using multidata causal discovery.
Source:
Environmental Data Science; 2023, Vol. 2, p1-13, 13p
Database:
Complementary Index

Weitere Informationen

Robust feature selection is vital for creating reliable and interpretable machine-learning (ML) models. When designing statistical prediction models in cases where domain knowledge is limited and underlying interactions are unknown, choosing the optimal set of features is often difficult. To mitigate this issue, we introduce a multidata (M) causal feature selection approach that simultaneously processes an ensemble of time series datasets and produces a single set of causal drivers. This approach uses the causal discovery algorithms PC1 or PCMCI that are implemented in the Tigramite Python package. These algorithms utilize conditional independence tests to infer parts of the causal graph. Our causal feature selection approach filters out causally spurious links before passing the remaining causal features as inputs to ML models (multiple linear regression and random forest) that predict the targets. We apply our framework to the statistical intensity prediction of Western Pacific tropical cyclones (TCs), for which it is often difficult to accurately choose drivers and their dimensionality reduction (time lags, vertical levels, and areaaveraging). Using more stringent significance thresholds in the conditional independence tests helps eliminate spurious causal relationships, thus helping the ML model generalize better to unseen TC cases. M-PC1 with a reduced number of features outperforms M-PCMCI, noncausal ML, and other feature selection methods (lagged correlation and random), even slightly outperforming feature selection based on explainable artificial intelligence. The optimal causal drivers obtained from our causal feature selection help improve our understanding of underlying relationships and suggest new potential drivers of TC intensification. [ABSTRACT FROM AUTHOR]

Copyright of Environmental Data Science is the property of Cambridge University Press and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)