Treffer: A GPU IMPLEMENTATION OF THE TSUNAMI EQUATION.
Weitere Informationen
In this paper, we consider numerical simulation and GPU (graphics processing unit) computing for the two-dimensional non-linear tsunami equation, which is a fundamental equation of tsunami propagation in shallow water areas. Tsunamis are highly destructive natural disasters that have a significant impact on coastal regions. These events are typically caused by undersea earthquakes, volcanic eruptions, landslides, and possibly an asteroid impact. To solve numerically, firstly we discretized these equations in a rectangular domain and then transformed the partial differential equations into semi-implicit finite difference schemes. The spatial and time derivatives are approximated by using the second-order centered differences following the Crank-Nicolson method and the calculation method is based on the Jacobi method; the computation is performed using the C++ programming language; and the visualization of numerical results is performed by Matlab 2021. The initial condition was given as a Gaussian, and the basin profile has been approximated by a hyperbolic tangent. To accelerate the sequential algorithm, a parallel computation algorithm is developed using CUDA (Compute Unified Device Architecture) technology. CUDA technology has long been used for the numerical solution of partial differential equations (PDEs). It uses the parallel computing capabilities of graphics processing units (GPUs) to speed up the PDE solution. By taking advantage of the GPU's massive parallelism, CUDA technology can significantly speed up PDE computations, making it an effective tool for scientific computing in a variety of fields. The performance of the parallel implementation is tested by comparing the computation time between the sequential (CPU) solver and CUDA implementations for various mesh sizes. The comparison shows that our parallel implementation gives significant acceleration in the implementation of CUDA. [ABSTRACT FROM AUTHOR]
Copyright of Scientific Journal of Astana IT University is the property of Astana IT University and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)