Treffer: Bebida alcohólica a base de aguaymanto (Physalis peruviana) y tomate de árbol (Solanum betaceum): Caracterización química y sensorial.

Title:
Bebida alcohólica a base de aguaymanto (Physalis peruviana) y tomate de árbol (Solanum betaceum): Caracterización química y sensorial. (Spanish)
Alternate Title:
Alcoholic drink based on golden gooseberry (Physalis peruviana) and tree tomato (Solanum betaceum): Chemical and sensory characterization. (English)
Source:
Agroindustrial Science; set-dic2022, Vol. 12 Issue 3, p355-363, 9p
Database:
Complementary Index

Weitere Informationen

Golden gooseberry (Physalis peruviana) and tree tomato (Solanum betaceum) have bioactive components, which open up the possibility of finding new ways to industrialize them. The objective of the study was to report the chemical and sensory characterization of a new alcoholic beverage produced by mixtures of Physalis peruviana and Solanum betaceum fruits, through fermentation with Saccharomyces cerevisiae (Ale) and Saccharomyces pastorianus (Lager). The physicochemical characterization of the beverages obtained was determined by basic parameters such as alcoholic degree, pH, density, total soluble solids, which were analyzed using: the AOAC "Official Methods of Analysis". Total carotenoids were analyzed according to: mg b-carotene eq/100g; the total phenolic compounds were determined under the Folin Ciocalteus protocol; the color characteristics (L*, a* and b*) using computer vision and Python data analysis. The sensory characterization was established with the help of 60 panelists, who evaluated 8 characteristics (flower aroma, nut aroma, wood aroma, astringency, body, flower odor, nut odor, and wood odor). Through a principal component analysis (PCA) and clustering analysis, it was shown that the fermented Ale-25AG-75BE and Ale-50AG-50BE, presented greater preference with 60 and 80%, being represented by Clusters 3 and 4. Finally, this study shows the feasibility of using mixtures of goldenberry and tree tomato to produce fermented alcoholic beverages, which could be inserted into the market as a new product. [ABSTRACT FROM AUTHOR]

El aguaymanto (Physalis peruviana) y el tomate de árbol (Solanum betaceum), poseen componentes bioactivos, que abren la posibilidad de buscar nuevas formas de industrializarlos. El objetivo del estudio fue reportar la caracterización química y sensorial de una nueva bebida alcohólica producida por mezclas de frutos de Physalis peruviana y Solanum betaceum, mediante una fermentación con Saccharomyces cerevisiae (Ale) y Saccharomyces pastorianus (Lager). La caracterización fisicoquímica de las bebidas obtenidas fue determinada por parámetros básicos como el grado alchólico, pH, densidad, solidos solubles totales, que se analizaron mediante: el “Official Methods of Analysis” de la AOAC. Los carotenoides totales se analizaron según: mg b-caroteno eq/100g; los compuestos fenólicos totales se determinaron bajo el protocolo de Folin Ciocalteus; las características cromáticas (L*, a* y b*) mediante visión computacional y análisis de datos de Python. La caracterización sensorial se estableció con ayuda de 60 panelistas, que evaluaron 8 características (aroma a flores, aroma a frutos secos, aroma a madera, astringencia, cuerpo, olor a flores, olor a frutos secos y olor a madera). Mediante un análisis de componentes principales (ACP) y análisis de clusterización, se mostraron que los fermentados Ale-25AG-75BE y Ale-50AG-50BE, presentaron mayor preferencia con el 60 y 80%, siendo representado por los Clúster 3 y 4. Finalmente, este estudio muestra la factibilidad de utilizar mezclas de aguaymanto y tomate de árbol para producir bebidas alcohólicas fermentadas, que podrían insertarse en el mercado como un nuevo producto. [ABSTRACT FROM AUTHOR]

Copyright of Agroindustrial Science is the property of Agroindustrial Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)