Treffer: Prediction of Sludge Volume Index in a Wastewater Treatment Plant Using Recurrent Neural Network.

Title:
Prediction of Sludge Volume Index in a Wastewater Treatment Plant Using Recurrent Neural Network.
Source:
Sustainability (2071-1050); May2022, Vol. 14 Issue 10, p6276-6276, 15p
Database:
Complementary Index

Weitere Informationen

Sludge Volume Index (SVI) is one of the most important operational parameters in an activated sludge process. It is difficult to predict SVI because of the nonlinearity of data and variability operation conditions. With complex time-series data from Wastewater Treatment Plants (WWTPs), the Recurrent Neural Network (RNN) with an Explainable Artificial Intelligence was applied to predict SVI and interpret the prediction result. RNN architecture has been proven to efficiently handle time-series and non-uniformity data. Moreover, due to the complexity of the model, the newly Explainable Artificial Intelligence concept was used to interpret the result. Data were collected from the Nine Springs Wastewater Treatment Plant, Madison, Wisconsin, and the data were analyzed and cleaned using Python program and data analytics approaches. An RNN model predicted SVI accurately after training with historical big data collected at the Nine Spring WWTP. The Explainable Artificial Intelligence (AI) analysis was able to determine which input parameters affected higher SVI most. The prediction of SVI will benefit WWTPs to establish corrective measures to maintaining stable SVI. The SVI prediction model and Explainable Artificial Intelligence method will help the wastewater treatment sector to improve operational performance, system management, and process reliability. [ABSTRACT FROM AUTHOR]

Copyright of Sustainability (2071-1050) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)