Treffer: Open-Source Drone Programming Course for Distance Engineering Education.

Title:
Open-Source Drone Programming Course for Distance Engineering Education.
Source:
Electronics (2079-9292); Dec2020, Vol. 9 Issue 12, p2163, 1p
Database:
Complementary Index

Weitere Informationen

This article presents a full course for autonomous aerial robotics inside the RoboticsAcademy framework. This "drone programming" course is open-access and ready-to-use for any teacher/student to teach/learn drone programming with it for free. The students may program diverse drones on their computers without a physical presence in this course. Unmanned aerial vehicles (UAV) applications are essentially practical, as their intelligence resides in the software part. Therefore, the proposed course emphasizes drone programming through practical learning. It comprises a collection of exercises resembling drone applications in real life, such as following a road, visual landing, and people search and rescue, including their corresponding background theory. The course has been successfully taught for five years to students from several university engineering degrees. Some exercises from the course have also been validated in three aerial robotics competitions, including an international one. RoboticsAcademy is also briefly presented in the paper. It is an open framework for distance robotics learning in engineering degrees. It has been designed as a practical complement to the typical online videos of massive open online courses (MOOCs). Its educational contents are built upon robot operating system (ROS) middleware (de facto standard in robot programming), the powerful 3D Gazebo simulator, and the widely used Python programming language. Additionally, RoboticsAcademy is a suitable tool for gamified learning and online robotics competitions, as it includes several competitive exercises and automatic assessment tools. [ABSTRACT FROM AUTHOR]

Copyright of Electronics (2079-9292) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)