Treffer: Numerical Solutions to Optimal Portfolio Selection and Consumption Strategies under Stochastic Volatility.

Title:
Numerical Solutions to Optimal Portfolio Selection and Consumption Strategies under Stochastic Volatility.
Authors:
Source:
Complexity; 7/30/2020, p1-16, 16p
Database:
Complementary Index

Weitere Informationen

Based on the method of dynamic programming, this paper uses analysis methods governed by the nonlinear and inhomogeneous partial differential equation to study modern portfolio management problems with stochastic volatility, incomplete markets, limited investment scope, and constant relative risk aversion (CRRA). In this paper, a three-level Crank–Nicolson finite difference scheme is used to determine numerical solutions under this general setting. One of the main contributions of this paper is to apply this three-level technology to solve the portfolio selection problem. In addition, we have used a technique to deal with the nonlinear term, which is another novelty in performing the Crank–Nicolson algorithm. The Crank–Nicolson algorithm has also been extended to third-order accuracy by performing Richardson's extrapolation. The accuracy of the proposed algorithm is much higher than the traditional finite difference method. Lastly, experiments are conducted to show the performance of the proposed algorithm. [ABSTRACT FROM AUTHOR]

Copyright of Complexity is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)