Treffer: A low leakage TG‐CNTFET–based inexact full adder for low power image processing applications.

Title:
A low leakage TG‐CNTFET–based inexact full adder for low power image processing applications.
Source:
International Journal of Circuit Theory & Applications; Sep2019, Vol. 47 Issue 9, p1446-1458, 13p
Database:
Complementary Index

Weitere Informationen

Summary: This paper presents a highly stable, low leakage inexact full adder (FA) which is based on top gate carbon nanotube field effect transistors (TG‐CNTFET) for motion detector applications. Inexact arithmetic circuits are highly accepted in low power multimedia applications. Circuit level metrics, ie, average power, propagation delay, power‐delay product (PDP), and leakage power dissipation as well as application level metric such as peak signal to noise ratio (PSNR) are considered to compare the performance of proposed inexact FA. All the simulations are performed using HSPICE tool with Stanford 32‐nm TG‐CNTFET model. The operating frequency used for simulation is 1‐Ghz with 0.9‐V supply voltage. Proposed inexact FA successfully achieve manifold reduction in leakage power as well as consume 89.2% lesser energy as compared with latest existing inexact FA while having other parameters in acceptable range. Simulations using MATLAB show satisfactory image quality and PSNR value for motion detection applications. The effect of variations in voltage and temperature on leakage power is also presented which confirms stability of the proposed circuit. [ABSTRACT FROM AUTHOR]

Copyright of International Journal of Circuit Theory & Applications is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)