Treffer: GemPy 1.0: open-source stochastic geological modeling and inversion.
Weitere Informationen
The representation of subsurface structures is an essential aspect of a wide variety of geoscientific investigations and applications: ranging from geofluid reservoir studies, over raw material investigations, to geosequestration, as well as many branches of geoscientific research studies and applications in geological surveys. A wide range of methods exists to generate geological models. However, especially the powerful methods are behind a paywall in expensive commercial packages. We present here a full open-source geomodeling method, based on an implicit potential-field interpolation approach. The interpolation algorithm is comparable to implementations in commercial packages and capable of constructing complex full 3-D geological models, including fault networks, fault-surface interactions, unconformities, and dome structures. This algorithm is implemented in the programming language Python, making use of a highly efficient underlying library for efficient code generation (theano) that enables a direct execution on GPU's. The functionality can be separated into the core aspects required to generate 3-D geological models and additional assets for advanced scientific investigations. These assets provide the full power behind our approach, as they enable the link to Machine Learning and Bayesian inference frameworks and thus a path to stochastic geological modeling and inversions. In addition, we provide methods to analyse model topology and to compute gravity fields on the basis of the geological models and assigned density values. In summary, we provide a basis for open scientific research using geological models, with the aim to foster reproducible research in the field of geomodeling. [ABSTRACT FROM AUTHOR]
Copyright of Geoscientific Model Development Discussions is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)