Treffer: Accelerating computer-based recognition of fynbos leaves using a Graphics Processing Unit.
Weitere Informationen
The Cape Floristic Kingdom (CFK) is the most diverse floristic kingdom in the world and has been declared an international heritage site. However, it is under threat from wild fires and invasive species. Much of the work of managing this natural resource, such as removing alien vegetation or fighting wild fires, is done by volunteers and casual workers. The Fynbos Leaf Optical Recognition Application (FLORA) was developed to assist in the recognition of plants of the CFK. The first version of FLORA was developed as a rapid prototype in MATLAB, but suffered from slow performance and did not run as a lightweight standalone executable. FLORA was thus re-developed as a standalone C++ application and subsequently enhanced using a graphics processing unit (GPU). This paper presents all three versions, viz., the MATLAB prototype, the C++ non-accelerated version, and the C++ GPU-accelerated version. The accuracy of predictions remained consistent. The C++ version was noticeable faster than the original prototype, achieving an average speed-up of 42 for high-resolution images. The GPU-accelerated version was even faster achieving an average speed-up of 54. Such time saving would be perceptible for batch processing, such as rebuilding feature descriptors in the leaf database. [ABSTRACT FROM AUTHOR]
Copyright of South African Computer Journal is the property of South African Computer Journal and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)