Result: ViMDT: a clinical data visual analysis tool for multi-disciplinary treatment of lung cancer.
JMIR Ment Health. 2024 May 21;11:e53894. (PMID: 38771630)
Biochem Biophys Rep. 2023 Mar 06;34:101421. (PMID: 36923007)
IEEE Trans Vis Comput Graph. 2022 Dec;28(12):5091-5112. (PMID: 34314358)
Nat Biotechnol. 2021 Nov;39(11):1444-1452. (PMID: 34140681)
Eur J Immunol. 2023 Dec;53(12):e2350454. (PMID: 37621208)
CA Cancer J Clin. 2024 Jan-Feb;74(1):12-49. (PMID: 38230766)
Lancet. 2024 Aug 24;404(10454):803-822. (PMID: 39121882)
Front Immunol. 2018 Jan 29;9:102. (PMID: 29434605)
Stud Health Technol Inform. 2020 Jun 16;270:247-251. (PMID: 32570384)
IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):2523-2537. (PMID: 38324432)
Cureus. 2024 Apr 6;16(4):e57728. (PMID: 38711724)
IEEE J Biomed Health Inform. 2021 Nov;25(11):4098-4109. (PMID: 34613922)
Proc AMIA Symp. 1998;:76-80. (PMID: 9929185)
Nephrol Dial Transplant. 2024 Dec 20;40(1):48-59. (PMID: 39315700)
Bioinformatics. 2019 Nov 1;35(21):4515-4518. (PMID: 31214700)
IEEE Trans Vis Comput Graph. 2018 Aug 20;:. (PMID: 30136973)
Ann Fam Med. 2011 Sep-Oct;9(5):398-405. (PMID: 21911758)
IEEE J Biomed Health Inform. 2018 Sep;22(5):1589-1604. (PMID: 29989977)
Cancers (Basel). 2021 May 21;13(11):. (PMID: 34064232)
Appl Clin Inform. 2020 Jan;11(1):34-45. (PMID: 31940670)
IEEE Trans Vis Comput Graph. 2023 Oct;29(10):4031-4046. (PMID: 35588413)
Transl Lung Cancer Res. 2020 Aug;9(4):1629-1638. (PMID: 32953537)
J Am Med Inform Assoc. 2015 Mar;22(2):330-9. (PMID: 25336597)
Radiother Oncol. 2024 Jan;190:109976. (PMID: 37918636)
Heliyon. 2024 Apr 22;10(9):e29995. (PMID: 38694098)
Transl Psychiatry. 2016 Oct 18;6(10):e921. (PMID: 27754482)
J Am Med Inform Assoc. 2021 Jul 14;28(7):1401-1410. (PMID: 33682004)
IEEE Trans Vis Comput Graph. 2018 Aug 20;:. (PMID: 30136981)
Further Information
Multi-disciplinary treatment (MDT) has become a routine practice in clinical cancer diagnosis and treatment, playing an indispensable role in clinical decision-making. By integrating expertise from multiple disciplines, MDT provides patients with individualized diagnosis and treatment strategies. However, there is not yet a specialized clinical data visualization tool for MDT. This paper develops a novel clinical data analysis visualization tool for MDT, which analyzes in-depth and displays patient data comprehensively. Specifically, this tool designs a latent Dirichlet allocation (LDA)-based visualization model for clinical unstructured data, and Z-Score-3σ transformation and hierarchical strategies for clinical structural data. Moreover, we propose to predict personalized anti-tumor drug efficacy based on topic keywords. The results showed that, compared with users who did not use the tool, the time cost in MDT decision-making for users who used the tool was reduced by 26.17%. Furthermore, the proposed drug efficacy prediction method achieved an accuracy rate of 71.08% on a dataset of 958 patients with non-small cell cancer treated with anti-tumor drugs. The proposed tool is potentially helpful for doctors in MDT tasks by vividly visualizing the large-scale complex clinical data and improving the MDT efficiency.
(© 2026. The Author(s).)
Declarations. Conflict of interest: The authors declare that they have no competing interests. Ethical approval: This study was conducted in accordance with the guidelines of the Declaration of Helsinki and approved by the Institutional Research Ethics Committee of Anhui Chest Hospital (NO. KJ2024-018). Consent to participate: Informed consent was obtained from all study participants. Furthermore, all data underwent anonymization procedures (e.g., removal of names, identification card numbers, telephone numbers, and other directly identifiable information) to address GDPR/HIPAA compliance. Consent for publication: Not applicable.