Treffer: Computationally efficient x-ray simulation framework using parameterized material attenuation models in anatomically detailed imaging.

Title:
Computationally efficient x-ray simulation framework using parameterized material attenuation models in anatomically detailed imaging.
Authors:
Nassi M; Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands., Mikerov M; Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands., Michielsen K; Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands., Sechopoulos I; Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands.; Dutch Expert Centre for Screening (LRCB), Nijmegen, the Netherlands.; Technical Medical Centre, University of Twente, Enschede, the Netherlands.
Source:
Medical physics [Med Phys] 2026 Jan; Vol. 53 (1), pp. e70255.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: John Wiley and Sons, Inc Country of Publication: United States NLM ID: 0425746 Publication Model: Print Cited Medium: Internet ISSN: 2473-4209 (Electronic) Linking ISSN: 00942405 NLM ISO Abbreviation: Med Phys Subsets: MEDLINE
Imprint Name(s):
Publication: 2017- : Hoboken, NJ : John Wiley and Sons, Inc.
Original Publication: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics.
References:
Segars WP, Bond J, Frush J, et al. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization. Med Phys. 2013;40(4):043701. doi:10.1118/1.4794178.
Abadi E, Segars WP, Tsui BMW, et al. Virtual clinical trials in medical imaging: a review. J Med Imaging. 2020;7(4):042805. doi:10.1117/1.JMI.7.4.042805.
Golosio B, Schoonjans T, Brunetti A, Oliva P, Masala GL. Monte Carlo simulation of X‐ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques. Comput Phys Commun. 2014;185(3):1044‐1052. doi:10.1016/j.cpc.2013.10.034.
Yao M, Kaftandjian V, Peterzol‐Parmentier A, Schumm A, Duvauchelle P. Hybrid Monte Carlo and deterministic simulation approach for modeling a computed radiography imaging chain from X‐ray exposure to optical readout. Nucl Instrum Methods Phys Res, Sect A. 2019;941:162328. doi:10.1016/j.nima.2019.06.069.
Dahal L, Ghojoghnejad M, Ghosh D, et al. XCAT‐3.0: A Comprehensive Library of Personalized Digital Twins Derived from CT Scans. arXiv. 2024, Preprint posted online. doi:10.48550/arXiv.2405.11133.
Tomal A, Mazarro I, Kakuno EM, Poletti ME. Experimental determination of linear attenuation coefficient of normal, benign and malignant breast tissues. Radiat Meas. 2010;45(9):1055‐1059. doi:10.1016/j.radmeas.2010.08.008.
Bragg WH, Peirce SE LXIV. The absorption coefficients of X rays. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1914;28(166):626‐630. doi:10.1080/14786441008635242.
McCullough EC. Photon attenuation in computed tomography. Med Phys. 1975;2(6):307‐320. doi:10.1118/1.594199.
Bolotin HH. Analytic and quantitative exposition of patient‐specific systematic inaccuracies inherent in planar DXA‐derived in vivo BMD measurements. Med Phys. 1998;25(2):139‐151. doi:10.1118/1.598175.
Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. Springer International Publishing. 2019. doi:10.1007/978‐3‐030‐30351‐8.
Wirgin A, The inverse crime. arXiv. 2004. Preprint posted online. doi:10.48550/arXiv.math‐ph/0401050.
Jackson DF, Hawkes DJ. X‐ray attenuation coefficients of elements and mixtures. Phys Rep. 1981;70(3):169‐233. doi:10.1016/0370‐1573(81)90014‐4.
Kirby BJ, Davis JR, Grant JA, Morgan MJ. Extracting material parameters from x‐ray attenuation: a CT feasibility study using kilovoltage synchrotron x‐rays incident upon low atomic number absorbers. Phys Med Biol. 2003;48(20):3389‐3409. doi:10.1088/0031‐9155/48/20/009.
Midgley SM. A parameterization scheme for the x‐ray linear attenuation coefficient and energy absorption coefficient. Phys Med Biol. 2004;49(2):307. doi:10.1088/0031‐9155/49/2/009.
Benoist L. Lois de transparence de la matière pour les rayons X. J Phys Theor Appl. 1901;10(1):653‐668. doi:10.1051/jphystap:0190100100065300.
Newville M, easyXAFS, Whittington N, et al. xraypy/XrayDB: X‑ray Reference Data in SQLite [software]. Version 4.5.8. Zenodo. 2025. doi: 10.5281/zenodo.16114067.
Elam WT, Ravel BD, Sieber JR. A new atomic database for X‐ray spectroscopic calculations. Radiat Phys Chem. 2002;63:121‐128. doi:10.1016/S0969‐806X(01)00227‐4.
Hammerstein GR, Miller DW, White DR, Masterson ME, Woodard HQ, Laughlin JS. Absorbed radiation dose in mammography. Radiology. 1979;130(2):485‐491. doi:10.1148/130.2.485.
Woodard HQ, White DR. The composition of body tissues. Br J Radiol. 1986;59(708):1209‐1218. doi:10.1259/0007‐1285‐59‐708‐1209.
White D, Booz J, Griffith RV, Spokas JJ, Wilson IJ. Tissue substitutes in radiation dosimetry and measurement. ICRU Report. 1989;44:10‐1093.
Menzel HG, Clement C, DeLuca P. ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP. 2009;39(2):1‐164. doi:10.1016/j.icrp.2009.09.001.
Roth SD. Ray casting for modeling solids. Comput Gr Image Process. 1982;18(2):109‐144. doi:10.1016/0146‐664X(82)90169‐1.
Withers PJ, Bouman C, Carmignato S, et al. X‐ray computed tomography. Nat Rev Methods Primers. 2021;1(1):18. doi:10.1038/s43586‐021‐00015‐4.
Nuyts J, Man BD, Dupont P, Defrise M, Suetens P, Mortelmans L. Iterative reconstruction for helical CT: a simulation study. Phys Med Biol. 1998;43(4):729. doi:10.1088/0031‐9155/43/4/003.
García E, Fedon C, Caballo M, Martí R, Sechopoulos I, Diaz O. Realistic compressed breast phantoms for medical physics applications. In: Van Ongeval C, Marshall N, Bosmans H, (eds.) 15th International Workshop on Breast Imaging (IWBI2020). SPIE; 2020:73. doi:10.1117/12.2564273.
Saunders Jr RS, E Samei. A method for modifying the image quality parameters of digital radiographic images. Med Phys. 2003;30(11):3006‐3017. doi:10.1118/1.1621870.
Tunissen SAM, Oostveen LJ, Moriakov N, et al. Development, validation, and simplification of a scanner‐specific CT simulator. Med Phys. 2024;51(3):2081‐2095. doi:10.1002/mp.16679.
De Man B, Basu S, Distance‐driven projection and backprojection. In: 2002 IEEE Nuclear Science Symposium Conference Record. Vol 3. 2002:1477‐1480. doi:10.1109/NSSMIC.2002.1239600.
Birnbaum BA, Hindman N, Lee J, Babb JS. Multi–Detector row CT attenuation measurements: assessment of intra‐ and interscanner variability with an anthropomorphic body CT phantom. Radiology. 2007;242(1):109‐119. doi:10.1148/radiol.2421052066.
Grant Information:
19403 Dutch Research Council (NWO) under the NWO Talent Vici AES 2021
Contributed Indexing:
Keywords: anatomical realism; computed tomography; image simulation; parameterization model; spectral imaging; tomosynthesis; virtual clinical trials; x‐ray imaging
Entry Date(s):
Date Created: 20260108 Date Completed: 20260108 Latest Revision: 20260120
Update Code:
20260120
PubMed Central ID:
PMC12783016
DOI:
10.1002/mp.70255
PMID:
41506870
Database:
MEDLINE

Weitere Informationen

Background: Virtual clinical trials provide an efficient alternative to clinical imaging trials for evaluating imaging technologies. In x-ray simulations, however, modeling material-specific attenuation becomes computationally intensive as anatomical complexity and material heterogeneity in digital phantoms increase. Parameterization models offer a potential solution by representing material properties with a compact set of coefficients.
Purpose: To develop and validate an x-ray simulation framework that models material attenuation using parameterization models, reducing computational cost while maintaining accuracy.
Methods: Material attenuation was modeled with a five-coefficient parameterization derived from physical cross-section data. Unlike conventional ray-tracing, which projects each material separately, the proposed method projects only the five parameter maps, making computational cost independent of phantom complexity. This framework was evaluated in two scenarios: breast imaging with 10 compressed breast phantoms with varying fibro-glandular content, and whole-body imaging with head and abdomen phantoms. Accuracy was assessed by computing percent errors in attenuation coefficients, sinograms, and reconstructed images relative to the conventional approach. For whole-body imaging only, additional analyses included the impact of resolution loss and noise, the comparison with errors introduced by different projector models to place results in the context of standard simulation variability, and computational time measurements.
Results: Across all materials and both applications, the maximum attenuation coefficient error was 0.007% (breast skin tissue), far below reported biological variability. Projection and reconstruction errors remained within ± 0.006% for all cases. In whole-body imaging, these errors were well below those from projector model differences (± 0.5%), and image modification routines further concentrated the error distribution around zero. Simulation times decreased significantly, with acceleration factors scaling linearly with the number of materials within the phantoms.
Conclusions: The proposed framework achieves accurate and efficient simulation of material attenuation in x-ray imaging, especially in anatomically complex scenarios. Validated in both breast and whole-body imaging, it offers a robust and efficient alternative to conventional methods, supporting the development of advanced virtual clinical trials and spectral imaging research.
(© 2026 The Author(s). Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.)