Treffer: Effect of AI-Based Natural Language Feedback on Engagement and Clinical Outcomes in Fully Self-Guided Internet-Based Cognitive Behavioral Therapy for Depression: 3-Arm Randomized Controlled Trial.
Original Publication: [Pittsburgh, PA? : s.n., 1999-
BMC Psychiatry. 2009 Dec 03;9:78. (PMID: 19958540)
BMJ. 2010 Mar 23;340:c332. (PMID: 20332509)
JAMA Psychiatry. 2017 Apr 01;74(4):351-359. (PMID: 28241179)
Arch Gen Psychiatry. 1992 Oct;49(10):809-16. (PMID: 1417434)
Clin Psychol Rev. 2022 Aug;96:102179. (PMID: 35763975)
JAMA Netw Open. 2024 Nov 4;7(11):e2429630. (PMID: 39576645)
J Gen Intern Med. 2001 Sep;16(9):606-13. (PMID: 11556941)
Ann Fam Med. 2018 Mar;16(2):111-119. (PMID: 29531101)
Int J Environ Res Public Health. 2021 Nov 16;18(22):. (PMID: 34831779)
J Clin Epidemiol. 2021 Sep;137:200-208. (PMID: 33892086)
Behav Res Ther. 2023 May;164:104292. (PMID: 37003138)
BMJ. 2019 Apr 9;365:l1476. (PMID: 30967483)
Arch Intern Med. 2006 May 22;166(10):1092-7. (PMID: 16717171)
Patient Educ Couns. 2005 Oct;59(1):21-30. (PMID: 16198215)
Fertil Steril. 2023 Jul;120(1):202-204. (PMID: 37085096)
Acad Psychiatry. 2016 Aug;40(4):647-9. (PMID: 27259490)
Biol Psychiatry. 2003 Sep 1;54(5):573-83. (PMID: 12946886)
Epidemiol Psychiatr Sci. 2019 Apr 05;29:e30. (PMID: 30947759)
JMIR Ment Health. 2021 Jul 6;8(7):e23091. (PMID: 34255714)
Front Digit Health. 2022 Apr 11;4:847991. (PMID: 35480848)
J Med Internet Res. 2025 Sep 10;27:e71852. (PMID: 40929730)
CNS Spectr. 2019 Jun;24(3):322-332. (PMID: 29140227)
Int J Behav Med. 2016 Dec;23(6):776-794. (PMID: 26957109)
JMIR Ment Health. 2024 Aug 21;11:e59560. (PMID: 39167795)
Transl Psychiatry. 2023 Oct 6;13(1):309. (PMID: 37798296)
Arch Gen Psychiatry. 1995 Apr;52(4):304-12. (PMID: 7702447)
Am J Psychother. 2020 Mar 01;73(1):8-14. (PMID: 32122161)
EClinicalMedicine. 2022 Sep 28;54:101675. (PMID: 36193171)
NPJ Digit Med. 2022 Sep 15;5(1):144. (PMID: 36109583)
Int J Eat Disord. 2011 Nov;44(7):647-54. (PMID: 21997429)
Psychol Med. 2022 Jul;52(10):1875-1882. (PMID: 33138872)
CMAJ. 2012 Feb 21;184(3):E191-6. (PMID: 22184363)
Gen Hosp Psychiatry. 2013 Nov-Dec;35(6):592-7. (PMID: 24029431)
Psychol Assess. 2014 Sep;26(3):815-830. (PMID: 24708078)
Acta Psychiatr Scand. 2021 Sep;144(3):288-299. (PMID: 34107050)
Int Clin Psychopharmacol. 2008 Mar;23(2):70-83. (PMID: 18301121)
Lancet. 2018 Nov 10;392(10159):1789-1858. (PMID: 30496104)
Front Psychiatry. 2019 Oct 25;10:749. (PMID: 31708813)
BJPsych Open. 2016 Mar 9;2(2):127-138. (PMID: 27703765)
NPJ Digit Med. 2022 Apr 8;5(1):46. (PMID: 35396451)
Health Aff (Millwood). 2009 May-Jun;28(3):w490-501. (PMID: 19366722)
JMIR Ment Health. 2017 Jun 06;4(2):e19. (PMID: 28588005)
JAMA Psychiatry. 2021 Apr 1;78(4):361-371. (PMID: 33471111)
J Med Internet Res. 2011 Aug 05;13(3):e52. (PMID: 21821503)
J Med Internet Res. 2005 Mar 31;7(1):e11. (PMID: 15829473)
Br J Psychiatry. 2025 May 14;:1-14. (PMID: 40365980)
J Med Internet Res. 2013 Oct 17;15(10):e231. (PMID: 24135213)
Psychol Med. 2015 Oct;45(13):2717-26. (PMID: 25881626)
World Psychiatry. 2016 Oct;15(3):245-258. (PMID: 27717254)
Lancet. 2007 Sep 8;370(9590):841-50. (PMID: 17826169)
Am J Psychiatry. 2015 May;172(5):430-40. (PMID: 25677355)
Gen Hosp Psychiatry. 2018 May - Jun;52:64-69. (PMID: 29698880)
Arch Gen Psychiatry. 2000 May;57(5):459-66. (PMID: 10807486)
JAMA Psychiatry. 2019 Jul 1;76(7):700-707. (PMID: 30994877)
Eval Program Plann. 1982;5(3):233-7. (PMID: 10259963)
J Clin Psychiatry. 2003;64 Suppl 7:24-8. (PMID: 12755649)
Int Clin Psychopharmacol. 1996 Jun;11 Suppl 3:89-95. (PMID: 8923116)
Annu Rev Clin Psychol. 2018 May 7;14:91-118. (PMID: 29401044)
J Affect Disord. 2018 Mar 15;229:443-449. (PMID: 29331706)
J Med Internet Res. 2021 Mar 23;23(3):e24850. (PMID: 33755028)
J Eval Clin Pract. 2010 Oct;16(5):895-901. (PMID: 20626541)
Spine (Phila Pa 1976). 2021 May 1;46(9):603-609. (PMID: 33290370)
JMIR Ment Health. 2021 Nov 26;8(11):e27404. (PMID: 34842556)
Depress Anxiety. 2006;23(4):245-9. (PMID: 16688739)
Lancet Psychiatry. 2021 Nov;8(11):969-980. (PMID: 34653393)
J Med Internet Res. 2021 May 4;23(5):e15708. (PMID: 33944788)
JMIR Mhealth Uhealth. 2018 Nov 23;6(11):e12106. (PMID: 30470676)
J Med Internet Res. 2011 Dec 31;13(4):e126. (PMID: 22209829)
J Med Internet Res. 2022 Sep 7;24(9):e36577. (PMID: 36069798)
Weitere Informationen
Background: Depression remains a major global cause of disability; yet, access to optimal mental health services is limited. Self-guided internet-based cognitive behavioral therapy (iCBT) offers a scalable alternative but is generally less effective than guided programs, showing limited antidepressant effects and incomplete symptomatic and functional recovery. Adherence remains a major barrier. Recent advances in artificial intelligence (AI), particularly natural language processing, enable automated advisory and empathic feedback that may enhance engagement and therapeutic impact. Although previous trials have reported promising effects, most used heterogeneous control conditions, making it difficult to isolate the specific contribution of AI within fully self-guided interventions.
Objective: This randomized controlled trial evaluated whether natural language processing-based AI feedback integrated into a fully self-guided iCBT program improves clinical outcomes and engagement compared with an otherwise identical iCBT program without AI support.
Methods: We recruited 1187 adults aged 20-60 years online and randomly assigned them to AI-augmented iCBT (AI-iCBT; n=396), iCBT without AI (n=397), or a waitlist control (n=394). Both active groups received 6 weekly sessions combining video-based psychoeducation and cognitive restructuring exercises. The AI-iCBT program additionally provided automated empathic and advisory feedback. The primary outcome was depressive symptom severity (Patient Health Questionnaire-9 [PHQ-9]) at week 7 and month 3, analyzed using mixed-effects models for repeated measures under an intention-to-treat framework. Secondary outcomes included a dichotomous PHQ-9 score of ≥10, Quick Inventory of Depressive Symptomatology, Generalized Anxiety Disorder-7, Sheehan Disability Scale, and weekly participation rates. Exploratory analyses assessed the impact of AI functions on engagement and antidepressant effects in the efficacy analysis set (EAS).
Results: In intention-to-treat analyses, no significant between-group differences were observed in mean PHQ-9 scores at week 7 or month 3, whereas engagement analyses showed a significant group × week interaction, with AI-iCBT participants demonstrating consistently higher odds of weekly participation (odds ratio 1.23, 95% CI 1.09-1.39; P<.001). Exploratory analyses indicated that activation of the empathic feedback function strongly predicted adherence (odds ratio 9.99, 95% CI 5.80-17.21; P<.001), while advisory feedback was not significant. In EAS analyses, iCBT showed significant short-term improvement versus control at postintervention, whereas at follow-up, only AI-iCBT showed a significantly lower proportion of participants with a PHQ-9 score of ≥10 compared with control (difference -0.15, 95% CI -0.30 to -0.01; P=.046). No serious adverse events were reported.
Conclusions: AI support significantly improved adherence to a fully self-administered program. In EAS analyses, AI-iCBT also showed a significantly lower proportion of participants with PHQ-9 score of ≥10 at follow-up compared with control. Empathic feedback emerged as a key mechanism for sustaining engagement, suggesting that AI communication may help maintain participation in scalable digital mental health interventions. Further research is required.
Trial Registration: University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) UMIN000019228; https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000022220.
(©Mirai So, Yoichi Sekizawa, Sora Hashimoto, Masami Kashimura, Hajime Yamakage, Norio Watanabe. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 05.01.2026.)