Treffer: Generative AI: foundational models. Natural Language Processing (NLP) and LARGE Language Models (LLM).

Title:
Generative AI: foundational models. Natural Language Processing (NLP) and LARGE Language Models (LLM).
Authors:
Mora-Delgado J; Grupo de Trabajo Medicina Digital de la SEMI, Spain; Unidad de Gestión Clínica de Medicina Interna y Cuidados Paliativos, Hospital Universitario Jerez de la Frontera, Jerez, Spain., Ramos-Ruperto L; Grupo de Trabajo Medicina Digital de la SEMI, Spain; Servicio de Medicina Interna, Hospital Universitario La Paz, Madrid, Spain., Pardilla MJ; Expert Data Analyst / MSC Big Data & AI, Spain., Sicilia MÁ; Departamento de Ciencias de la Computación, Universidad de Alcalá, Spain., Rodríguez-González A; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Spain; Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Spain., Sempere JM; Departamento de Sistemas Informáticos y Computación (DSIC), Universidad Politécnica de Valencia, Spain; Valencian Research Institute for Artificial Intelligence (VRAIN), Spain; Valencian Graduate School and Research Network of Artificial Intelligence (VALGRAI), Spain., Puchades R; Grupo de Trabajo Medicina Digital de la SEMI, Spain; Servicio de Medicina Interna, Hospital Universitario Dr Peset, Valencia, Spain. Electronic address: rpuchades@gmail.com.
Source:
Revista clinica espanola [Rev Clin Esp (Barc)] 2026 Jan; Vol. 226 (1), pp. 502413. Date of Electronic Publication: 2025 Dec 20.
Publication Type:
Journal Article; Review
Language:
English
Journal Info:
Publisher: Elsevier España Country of Publication: Spain NLM ID: 101632437 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2254-8874 (Electronic) Linking ISSN: 22548874 NLM ISO Abbreviation: Rev Clin Esp (Barc) Subsets: MEDLINE
Imprint Name(s):
Original Publication: [Barcelona] : Elsevier España
Contributed Indexing:
Keywords: Artificial intelligence; Clinical decision support systems; Electronic health records; Inteligencia artificial; Internistas; Internists; Natural language processing; Procesamiento de lenguaje natural; Registros electrónicos de salud; Sistemas de apoyo a la decisión clínica
Entry Date(s):
Date Created: 20251222 Date Completed: 20260116 Latest Revision: 20260121
Update Code:
20260121
DOI:
10.1016/j.rceng.2025.502413
PMID:
41429302
Database:
MEDLINE

Weitere Informationen

This work aims to provide internists with a practical, focused overview of how generative AI based on large language models can be effectively integrated into daily clinical practice. It describes the primary adaptation mechanisms like fine-tuning and retrieval-augmented generation (RAG) for tasks such as report generation, synthesis of clinical findings, and support in differential diagnoses, highlighting real-world examples in Internal Medicine. Technical and organizational requirements for adoption are analyzed, including computing infrastructure, integration with electronic health records, and security/privacy protocols under GDPR and the EU AI Act. Opportunities for enhancing clinical decision-making, optimizing workflows, and reducing administrative burden are emphasized, alongside current limitations like bias, hallucinations, and the need for human oversight. Finally, recommendations are offered for prospective validation in real-world settings and for ensuring explainable transparency, with the goal of empowering internists to incorporate these innovative tools responsibly and efficiently.
(Copyright © 2025 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.)

Declaration of competing interest The authors declare that they have no conflicts of interest.