Treffer: Analysis of Colloidal Transport Mechanisms in Western Blotting.
Original Publication: [Weinheim, Germany] : Verlag Chemie, [1980-
J. S. Marcus, W. French, and S. R. Quake, “Microfluidic Single‐Cell mRNA Isolation and Analysis,” Analytical Chemistry 78 (2006): 3084–3089, https://doi.org/10.1021/ac0519460.
S. Lindström and H. Andersson‐Svahn, “Miniaturization of Biological Assays‐Overview on Microwell Devices for Single‐Cell Analyses,” Biochim Biophys Acta—Gen Subj 1810 (2011): 308–316, https://doi.org/10.1016/j.bbagen.2010.04.009.
S. Chang, J. Wen, Y. Su, and H. Ma, “Microfluidic Platform for Studying the Anti‐Cancer Effect of Ursolic Acid on Tumor Spheroid,” Electrophoresis 43 (2022): 1466–1475, https://doi.org/10.1002/elps.202100382.
S. Li, Y. Coffinier, C. Lagadec, et al., “Single‐Cell Electrochemical Aptasensor Array,” ACS Sensors 8 (2023): 2921–2926, https://doi.org/10.1021/acssensors.3c00570.
F. O. Romero‐Soto, M. I. Polanco‐Oliva, R. C. Gallo‐Villanueva, S. O. Martínez‐Chapa, and V. H. Perez‐Gonzalez, “A Survey of Electrokinetically‐Driven Microfluidics for Cancer Cells Manipulation,” Electrophoresis 42 (2020): 605–625, https://doi.org/10.1002/elps.202000221.
B. K. Duan, P. E. Cavanagh, X. Li, and D. R. Walt, “Ultrasensitive Single‐Molecule Enzyme Detection and Analysis Using a Polymer Microarray,” Analytical Chemistry 90 (2018): 3091–3098, https://doi.org/10.1021/acs.analchem.7b03980.
N. T. Huang, Y. J. Hwong, and R. L. Lai, “A Microfluidic Microwell Device for Immunomagnetic Single‐Cell Trapping,” Microfluidics and Nanofluidics 22 (2018): 16, https://doi.org/10.1007/s10404‐018‐2040‐x.
Q. Li, A. Bencherif, and M. Su, “Edge‐enhanced Microwell Immunoassay for Highly Sensitive Protein Detection,” Analytical Chemistry 93 (2021): 10292–10300, https://doi.org/10.1021/acs.analchem.1c01754.
T. A. Duncombe, A. M. Tentori, and A. E. Herr, “Microfluidics: Reframing Biological Enquiry,” Nature Reviews Molecular Cell Biology 16 (2015): 554–567, https://doi.org/10.1038/nrm4041.
Y. Wu, Y. Ren, Y. Tao, L. Hou, and H. Jiang, “High‐throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array,” Analytical Chemistry 90 (2018): 11461–11469, https://doi.org/10.1021/acs.analchem.8b02628.
Z. Bai, Y. Deng, D. Kim, Z. Chen, Y. Xiao, and R. Fan, “An Integrated Dielectrophoresis‐Trapping and Nanowell Transfer Approach to Enable Double‐Sub‐Poisson Single‐Cell RNA Sequencing,” ACS Nano 14 (2020): 7412–7424, https://doi.org/10.1021/acsnano.0c02953.
M. Hata, M. Suzuki, and T. Yasukawa, “Selective Trapping and Retrieval of Single Cells Using Microwell Array Devices Combined with Dielectrophoresis,” Analytical Sciences 37 (2021): 803–806, https://doi.org/10.2116/analsci.21C002.
A. Lomeli‐Martin, N. Ahamed, V. V. Abhyankar, and B. H. Lapizco‐Encinas, “Electropatterning‐Contemporary Developments for Selective Particle Arrangements Employing Electrokinetics,” Electrophoresis 44 (2023): 884–909, https://doi.org/10.1002/elps.202200286.
J. R. Rettig and A. Folch, “Large‐scale Single‐cell Trapping and Imaging Using Microwell Arrays,” Analytical Chemistry 77 (2005): 5628–5634, https://doi.org/10.1021/ac0505977.
G. J. Pahapale, J. Tao, M. Nikolic, et al., “Directing Multicellular Organization by Varying the Aspect Ratio of Soft Hydrogel Microwells,” Advancement of Science 9 (2022): 2104649, https://doi.org/10.1002/advs.202104649.
M. A. Nguyen, N. T. Dinh, M. H. D. Thi, et al., “Simple and Rapid Method of Microwell Array Fabrication for Drug Testing on 3D Cancer Spheroids,” ACS Omega 9 (2024): 16949–16958.
O. M. Rahman, R. Tarantino, S. D. Waldman, and D. K. Hwang, “Single‐Step Fabrication of v‐Shaped Polymeric Microwells to Enhance Cancer Spheroid Formation,” ACS Biomaterial Science Engineering 11 (2025): 1857–1868, https://doi.org/10.1021/acsbiomaterials.4c02359.
M. N. Islam, Y. Liu, and A. E. Herr, “Electromigration of Charged Analytes through Immiscible Fluids in Multiphasic Electrophoresis,” Electrophoresis 46 (2024): 13–21, https://doi.org/10.1002/elps.202400192.
S. Hennig, Z. Shu, L. Gutzweiler, et al., “Paper‐based Open Microfluidic Platform for Protein Electrophoresis and Immunoprobing,” Electrophoresis 43 (2022): 621–631, https://doi.org/10.1002/elps.202100327.
S. M. Grist, A. P. Mourdoukoutas, and A. E. Herr, “3D Projection Electrophoresis for Single‐Cell Immunoblotting,” Nature Communications 11 (2020): 6237, https://doi.org/10.1038/s41467‐020‐19738‐1.
T. J. Johnson, D. Ross, M. Gaitan, and L. E. Locascio, “Laser Modification of Preformed Polymer Microchannels: Application to Reduce Band Broadening Around Turns Subject to Electrokinetic Flow,” Analytical Chemistry 73 (2001): 3656–3661, https://doi.org/10.1021/ac010269g.
H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering Flows in Small Devices: Microfluidics toward a Lab‐on‐a‐Chip,” Annual Review of Fluid Mechanics 36 (2004): 381–411, https://doi.org/10.1146/annurev.fluid.36.050802.122124.
T. M. Squires and S. R. Quake, “Microfluidics: Fluid Physics at the Nanoliter Scale,” Review of Modern Physics 77 (2005): 977, https://doi.org/10.1103/RevModPhys.77.977.
A. Waldbaur, H. Rapp, K. Länge, and B. E. Rapp, “Let There be Chip‐towards Rapid Prototyping of Microfluidic Devices: One‐Step Manufacturing Processes,” Analytical Methods 3 (2011): 2681–2716, https://doi.org/10.1039/c1ay05253e.
A. Ramos, P. García‐Sánchez, and H. Morgan, “AC Electrokinetics of Conducting Microparticles: A Review,” Current Opinion in Colloid and Interface Sciences 24 (2016): 79–90, https://doi.org/10.1016/j.cocis.2016.06.018.
F. Paratore, V. Bacheva, M. Bercovici, and G. V. Kaigala, “Reconfigurable Microfluidics,” Nature Reviews Chemistry 6 (2021): 70–80, https://doi.org/10.1038/s41570‐021‐00343‐9.
R. Luna, D. P. Heineck, E. Bucher, L. Heiser, and S. D. Ibsen, “Theoretical and Experimental Analysis of Negative Dielectrophoresis‐Induced Particle Trajectories,” Electrophoresis 43 (2022): 1366–1377, https://doi.org/10.1002/elps.202100372.
C. Vargas, F. Méndez, A. Docoslis, and C. Escobedo, “Colloid Transport by an Oscillatory Electroosmotic Flow Between Microelectrodes of Axially Variable Shape,” Physics of Fluids 35 (2023): 092014, https://doi.org/10.1063/5.0165213.
A. J. Hughes and A. E. Herr, “Microfluidic Western Blotting,” Proceedings National Academy of Science USA 109 (2012): 21450–21455, https://doi.org/10.1073/pnas.1207754110.
A. Hughes, D. Spelke, Z. Xu, C. Kang, D. Schaffer, and A. E. Herr, “Single‐Cell Western Blotting,” Nature Methods 11 (2014): 749–755, https://doi.org/10.1038/nmeth.2992.
J. H. Masliyah and S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena (John Wiley and Sons, 2006), https://doi.org/10.1002/0471799742.
R. F. Probstein, Physicochemical Hydrodynamics. (Wiley‐Interscience; 2005).
Q. Pan and A. E. Herr, “Geometry‐Induced Injection Dispersion in Single‐Cell Protein Electrophoresis,” Analytica Chimica Acta 1000 (2018): 214–222, https://doi.org/10.1016/j.aca.2017.11.049.
J. Vacík, Electrophoresis: A Survey of Techniques and Applications (Elsevier, 1979).
Z. Adamcyzk, “Particle Deposition from Flowing Suspensions,” Colloids and Surfaces 39 (1989): 1–37, https://doi.org/10.1016/0166‐6622(89)80176‐3.
C. M. Bender and S. A. Orzag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory (Springer Science and Business, 2013).
A. Ajdari, “Electro‐Osmosis on Inhomogeneously Charged Surfaces,” Physical Review Letter 75 (1995): 755–758, https://doi.org/10.1103/PhysRevLett.75.755.
L. Pieuchot, J. Marteau, A. Guignandon, et al., “Curvotaxis Directs Cell Migration through Cell‐Scale Curvature Landscapes,” Nature Communications 9 (2018): 3995, https://doi.org/10.1038/s41467‐018‐06494‐6.
M. Werner, A. Petersen, N. A. Kurniawan, and C. V. C. Bouten, “Cell‐Perceived Substrate Curvature Dynamically Coordinates the Direction, Speed, and Persistence of Stromal Cell Migration,” Advances in Biosystem 3 (2019): 1900080, https://doi.org/10.1002/adbi.201900080.
J. Y. Park, D. H. Lee, E. J. Lee, and S. H. Lee, “Study of Cellular Behaviors on Concave and Convex Microstructures Fabricated from Elastic PDMS Membranes,” Lab on A Chip 9 (2009): 2043–2049, https://doi.org/10.1039/b820955c.
C. Vargas, F. Méndez, A. Docoslis, and C. Escobedo, “Theoretical Analysis of Dendrite Formation Generated in an Electroosmotic Flow With Variable Shape Microelectrodes,” Physics of Fluids 36 (2024): 022015, https://doi.org/10.1063/5.0188631.
M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen, “Electrokinetic Instability Micromixing,” Analytical Chemistry 73 (2001): 5822–5832, https://doi.org/10.1021/ac0155411.
J. Vlassakis and A. E. Herr, “Joule Heating‐induced Dispersion in Open Microfluidic Electrophoretic Cytometry,” Analytical Chemistry 89 (2017): 12787–12796, https://doi.org/10.1021/acs.analchem.7b03096.
A. A. Dos‐Reis‐Delgado, A. Carmona‐Dominguez, G. Sosa‐Avalos, et al., “Recent Advances and Challenges in Temperature Monitoring and Control in Microfluidic Devices,” Electrophoresis 44 (2022): 268–297, https://doi.org/10.1002/elps.202200162.
C. Vargas, O. Bautista, and F. Méndez, “Effect of Temperature‐dependent Properties on Electroosmotic Mobility at Arbitrary Zeta Potentials,” Applied Mathematical Model 68 (2019): 616–628, https://doi.org/10.1016/j.apm.2018.11.050.
L. L. Hansen, G. Lomeli, J. Vlassakis, and A. E. Herr, Single‐Cell Resolution Immunoblotting (Humana, 2022).
0 (Proteins)
Weitere Informationen
This work investigates electrokinetically driven protein transport in open microfluidic devices with microwells featuring axial shape variations. The results indicate that protein propagation, which is lysed at the surface, depends on two key parameters: the electrical potential ratio INLINEMATH , and the geometric curvature of the microwell. The concave microwell configuration presents the best outcome due to the emergence of a transverse velocity component that confines the cell within the microwell. Lastly, protein concentration can be improved when the negative microwell geometric slope exhibits nondifferentiable behavior (e.g., edges or fractal geometries), while a higher zeta potential can broaden the influence of the Stern layer.
(© 2025 Wiley‐VCH GmbH.)