Treffer: Characterization of the Additional Pseudo-Crossover Frequency of Nanoparticles in Low Frequency Dielectrophoresis Regime.
Original Publication: [Weinheim, Germany] : Verlag Chemie, [1980-
T. J. Kwak, H. Jung, B. D. Allen, M. C. Demirel, and W.‐J. Chang, “Dielectrophoretic Separation of Randomly Shaped Protein Particles,” Separation and Purification Technology 262 (2021): 118280.
T. J. Kwak, T. Son, and J.‐S. Hong, et al., “Electrokinetically Enhanced Label‐Free Plasmonic Sensing for Rapid Detection of Tumor‐Derived Extracellular Vesicles,” Biosensors and Bioelectronics 237 (2023): 115422, https://doi.org/10.1016/j.bios.2023.115422.
T. J. Kwak, I. Hossen, R. Bashir, W.‐J. Chang, and C. H. Lee, “Localized Dielectric Loss Heating in Dielectrophoresis Devices,” Scientific Reports 9 (2019): 18977.
H. Zhang, H. Chang, and P. Neuzil, “DEP‐on‐a‐Chip: Dielectrophoresis Applied to Microfluidic Platforms,” Micromachines 10 (2019): 423, https://doi.org/10.3390/mi10060423.
T. Zhao, J. Yuan, Q. Deng, K. Feng, Z. Zhou, and X. Wang, “Contrast Experiments in Dielectrophoresis Polishing (DEPP)/Chemical Mechanical Polishing (CMP) of Sapphire Substrate,” Applied Sciences 9 (2019): 3704, https://doi.org/10.3390/app9183704.
T. Zhao, Q. Deng, C. Zhang, K. Feng, Z. Zhou, and J. Yuan, “Orthogonal Experimental Research on Dielectrophoresis Polishing (DEPP) of Silicon Wafer,” Micromachines 11 (2020): 544, https://doi.org/10.3390/mi11060544.
Y.‐W. Lu, C. Sun, Y.‐C. Kao, C.‐L. Hung, and J.‐Y. Juang, “Dielectrophoretic Crossover Frequency of Single Particles: Quantifying the Effect of Surface Functional Groups and Electrohydrodynamic Flow Drag Force,” Nanomaterials 10 (2020): 1364, https://doi.org/10.3390/nano10071364.
P. R. C. Gascoyne, X.‐B. Wang, Y. Huang, and F. F. Becker, “Dielectrophoretic Separation of Cancer Cells From Blood,” IEEE Transactions on Industry Applications 33 (1997): 670–678, https://doi.org/10.1109/28.585856.
F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. R. Gascoyne, “Separation of Human Breast Cancer Cells From Blood by Differential Dielectric Affinity,” Proceedings National Academy of Science of the United States of America 92 (1995): 860–864, https://doi.org/10.1073/pnas.92.3.860.
J. Yao, K. Zhao, J. Lou, and K. Zhang, “Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells,” Biosensors 14 (2024): 417, https://doi.org/10.3390/bios14090417.
M. P. Hughes, H. Morgan, and F. J. Rixon, “Measuring the Dielectric Properties of Herpes Simplex Virus Type 1 Virions With Dielectrophoresis,” Biochimica Et Biophysica Acta (BBA)—General Subjects 1571 (2002): 1–8, https://doi.org/10.1016/S0304‐4165(02)00161‐7.
V. E. Froude, J. I. Godfroy, S. Wang, H. Dombek, and Y. Zhu, “Anomalous Dielectrophoresis of Nanoparticles: A Rapid and Sensitive Characterization by Single‐Particle Laser Spectroscopy,” Journal of Physical Chemistry C 114 (2010): 18880–18885, https://doi.org/10.1021/jp108862d.
S. Wang and Y. I. Zhu, “Dielectrophoresis Directed Nanocolloidal and Supramolecular Assembly,” Encyclopedia of Nanotechnology, ed. B. Bhushan (Springer Netherlands, 2016), 741–753.
J. Wu, Y. Ben, D. Battigelli, and H.‐C. Chang, “Long‐Range AC Electroosmotic Trapping and Detection of Bioparticles,” Industrial & Engineering Chemistry Research 44 (2005): 2815–2822, https://doi.org/10.1021/ie049417u.
N. G. Loucaides, A. Ramos, and G. E. Georghiou, “Trapping and Manipulation of Nanoparticles by Using Jointly Dielectrophoresis and AC Electroosmosis,” Journal of Physics: Conference Series 100 (2008): 052015.
Y. Song, P. Chen, and M. T. Chung, et al., “AC Electroosmosis‐Enhanced Nanoplasmofluidic Detection of Ultralow‐Concentration Cytokine,” Nano Letters 17 (2017): 2374–2380, https://doi.org/10.1021/acs.nanolett.6b05313.
P.‐Y. Chiou, A. T. Ohta, A. Jamshidi, H.‐Y. Hsu, and M. C. Wu, “Light‐Actuated AC Electroosmosis for Nanoparticle Manipulation,” Journal of Microelectromechanical Systems 17 (2008): 525–531, https://doi.org/10.1109/JMEMS.2008.916342.
E.‐S. Yu, H. Lee, and S.‐M. Lee, et al., “Precise Capture and Dynamic Relocation of Nanoparticulate Biomolecules Through Dielectrophoretic Enhancement by Vertical Nanogap Architectures,” Nature Communications 11 (2020): 2804, https://doi.org/10.1038/s41467‐020‐16630‐w.
A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac Electrokinetics: A Review of Forces in Microelectrode Structures,” Journal of Physics D: Applied Physics 31 (1998): 2338–2353, https://doi.org/10.1088/0022‐3727/31/18/021.
N. G. Green, A. Ramos, A. González, A. Castellanos, and H. Morgan, “Electrothermally Induced Fluid Flow on Microelectrodes,” Journal of Electrostatics 53 (2001): 71–87, https://doi.org/10.1016/S0304‐3886(01)00132‐2.
A. Castellanos, A. Ramos, A. González, N. G. Green, and H. Morgan, “Electrohydrodynamics and Dielectrophoresis in Microsystems: Scaling Laws,” Journal of Physics D: Applied Physics 36 (2003): 2584–2597, https://doi.org/10.1088/0022‐3727/36/20/023.
L. Yang, P. P. Banada, A. K. Bhunia, and R. Bashir, “Effects of Dielectrophoresis on Growth, Viability and Immuno‐Reactivity of Listeria Monocytogenes,” Journal of Biological Engineering 2 (2008): 6, https://doi.org/10.1186/1754‐1611‐2‐6.
M. R. U. Rahman, T. J. Kwak, J. C. Woehl, and W.‐J. Chang, “Quantitative Analysis of the Three‐Dimensional Trap Stiffness of a Dielectrophoretic Corral Trap,” Electrophoresis 42 (2021): 644–655, https://doi.org/10.1002/elps.202000222.
M. R. U. Rahman, T. J. Kwak, J. C. Woehl, and W.‐J. Chang, “Effect of Geometry on Dielectrophoretic Trap Stiffness in Microparticle Trapping,” Biomedical Microdevices 23 (2021): 33, https://doi.org/10.1007/s10544‐021‐00570‐3.
U. Demirci, A. Khademhosseini, R. Langer, and J. Blander, Microfluidic Technologies for Human Health (World Scientific, 2013), https://doi.org/10.1142/8469.
S. A. M. Kirmani, F. D. Gudagunti, L. Velmanickam, D. Nawarathna, and I. T. Lima, “Negative Dielectrophoresis Spectroscopy for Rare Analyte Quantification in biological Samples,” Journal of Biomedial Optics 22 (2017): 037006, https://doi.org/10.1117/1.JBO.22.3.037006.
E. O. Adekanmbi and S. K. Srivastava, “Applications of Electrokinetics and Dielectrophoresis on Designing Chip‐Based Disease Diagnostic Platforms,” In Bio‐Inspired Technology, ed. R. Srivastava (IntechOpen, 2019).
J. M. Schurr, “On the Theory of the Dielectric Dispersion of Spherical Colloidal Particles in Electrolyte Solution 1,” Journal of Physical Chemistry 68 (1964): 2407–2413, https://doi.org/10.1021/j100791a004.
C. T. O'Konski, “Electric Properties of Macromolecules. V. Theory of Ionic Polarization in Polyelectrolytes,” Journal of Physical Chemistry 64 (1960): 605–619.
G. Schwarz, “A Theory of the Low‐Frequency Dielectric Dispersion of Colloidal Particles in Electrolyte Solution 1,2,” Journal of Physical Chemistry 66 (1962): 2636–2642, https://doi.org/10.1021/j100818a067.
M. P. Hughes, H. Morgan, and M. F. Flynn, “The Dielectrophoretic Behavior of Submicron Latex Spheres: Influence of Surface Conductance,” Journal of Colloid and Interface Science 220 (1999): 454–457, https://doi.org/10.1006/jcis.1999.6542.
N. Lesniewska, A. Beaussart, and J. F. L. Duval, “Electrostatic Interactions Between Soft Nanoparticles Beyond the Derjaguin Approximation: Effects of Finite Size of Ions and Charges, Dielectric Decrement and Ion Correlations,” Journal of Colloid and Interface Science 678 (2025): 808–827, https://doi.org/10.1016/j.jcis.2024.08.258.
W. Cao, M. Chern, A. M. Dennis, and K. A. Brown, “Measuring Nanoparticle Polarizability Using Fluorescence Microscopy,” Nano Letters 19 (2019): 5762–5768, https://doi.org/10.1021/acs.nanolett.9b02402.
E.‐S. Yu, H. Lee, and S.‐M. Lee, et al., “Precise Capture and Dynamic Relocation of Nanoparticulate Biomolecules Through Dielectrophoretic Enhancement by Vertical Nanogap Architectures,” Nature Communications 11 (2020): 2804, https://doi.org/10.1038/s41467‐020‐16630‐w.
A. Abdelghany, K. Yamasaki, Y. Ichikawa, and M. Motosuke, “Efficient Nanoparticle Focusing Utilizing Cascade AC Electroosmotic Flow,” Electrophoresis 43 (2022): 1755–1764, https://doi.org/10.1002/elps.202200054.
A. Salari, M. Navi, T. Lijnse, and C. Dalton, “AC Electrothermal Effect in Microfluidics: A Review,” Micromachines 10 (2019): 762, https://doi.org/10.3390/mi10110762.
D. Dutta, K. Smith, and X. Palmer, “Long‐Range ACEO Phenomena in Microfluidic Channel,” Surfaces 2023 6: 145–163.
J. P. H. Burt, T. A. K. Al‐Ameen, and R. Pethig, “An Optical Dielectrophoresis Spectrometer for Low‐Frequency Measurements on Colloidal Suspensions,” Journal of Physics E: Scientific Instruments 22 (1989): 952–957, https://doi.org/10.1088/0022‐3735/22/11/011.
A. González, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, “Fluid Flow Induced by Nonuniform ac Electric Fields in Electrolytes on Microelectrodes. II. A Linear Double‐Layer Analysis,” Physical Review E 61 (2000): 4019–4028, https://doi.org/10.1103/PhysRevE.61.4019.
Weitere Informationen
Dielectrophoresis (DEP) is a powerful tool for manipulating particles using non-uniform electric fields. This study combines numerical simulations and experiments to investigate crossover frequencies (COFs) for micro- and nanoparticles in a 3D microfluidic device with circular traps. MATLAB simulations revealed an inverse relationship between particle size and COF. For microparticles with diameters of 1.03, 2.27, 4.42, and 6.83 µm, the COFs were calculated as 769.10, 352.76, 183.96, and 120.51 kHz, respectively. For nanoparticles measuring 50, 170, and 500 nm, the corresponding COFs were 15.6, 4.62, and 1.57 MHz. These results closely matched experimental data. Notably, additional low-frequency pseudo-COFs emerged in experiments for nanoparticles ranging from 2 to 8 kHz (50 nm), 10 to 50 kHz (170 nm), and 40 to 100 kHz (500 nm). These frequencies proportionally increased with nanoparticle size and corresponded to unexpected negative DEP (nDEP)-like behavior under positive DEP (pDEP) conditions. This effect is attributed to low-frequency alternating current electroosmosis (ACEO), which dominates the DEP response of the nanoparticles smaller than 1 µm. These findings demonstrate strong agreement between numerical simulations and experimental results while also revealing the limitations of traditional models in predicting nanoparticle behavior under DEP. We expect that these results can also be applied to the manipulation of various bioparticles.
(© 2025 Wiley‐VCH GmbH.)