Treffer: Adaptive EEG preprocessing to mitigate electrode shift variability for robust motor imagery classification.

Title:
Adaptive EEG preprocessing to mitigate electrode shift variability for robust motor imagery classification.
Authors:
Xiong W; Faculty of Computing, Harbin Institute of Technology, Harbin, China., Ma L; Faculty of Computing, Harbin Institute of Technology, Harbin, China., Li H; Faculty of Computing, Harbin Institute of Technology, Harbin, China. lihaifeng@hit.edu.cn.
Source:
Scientific reports [Sci Rep] 2025 Nov 19; Vol. 15 (1), pp. 40808. Date of Electronic Publication: 2025 Nov 19.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
IEEE J Biomed Health Inform. 2019 Mar;23(2):631-641. (PMID: 29994055)
IEEE Trans Biomed Eng. 2024 Feb;71(2):423-432. (PMID: 37552589)
Front Hum Neurosci. 2015 Jun 02;9:308. (PMID: 26082705)
Brain Topogr. 2003 Winter;16(2):95-9. (PMID: 14977202)
Comput Biol Med. 2023 Sep;163:107235. (PMID: 37442010)
Electroencephalogr Clin Neurophysiol. 1982 Nov;54(5):591-4. (PMID: 6181984)
Hum Brain Mapp. 2017 Nov;38(11):5391-5420. (PMID: 28782865)
IEEE Trans Neural Syst Rehabil Eng. 2019 Jul;27(7):1352-1359. (PMID: 31217122)
PLoS One. 2022 Feb 8;17(2):e0263641. (PMID: 35134085)
Med Biol Eng Comput. 2013 May;51(5):571-9. (PMID: 23325145)
J Neural Eng. 2018 Oct;15(5):056013. (PMID: 29932424)
IEEE Trans Biomed Eng. 2020 Feb;67(2):399-410. (PMID: 31034407)
IEEE Trans Biomed Eng. 2018 May;65(5):1107-1116. (PMID: 28841546)
J Neuroeng Rehabil. 2015 Dec 02;12:110. (PMID: 26631105)
IEEE Trans Biomed Eng. 2012 Apr;59(4):920-8. (PMID: 22010143)
Sensors (Basel). 2019 Feb 26;19(5):. (PMID: 30813520)
Front Neurosci. 2023 Feb 13;17:1122661. (PMID: 36860620)
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):535-545. (PMID: 32745012)
IEEE Trans Neural Syst Rehabil Eng. 2018 Mar;26(3):698-708. (PMID: 29522413)
Contributed Indexing:
Keywords: Adaptive channel mixing layer (ACML); Brain-Computer interface (BCI); EEG-based motor imagery; Electrode placement variability
Entry Date(s):
Date Created: 20251119 Date Completed: 20251119 Latest Revision: 20251122
Update Code:
20251122
PubMed Central ID:
PMC12630851
DOI:
10.1038/s41598-025-24466-x
PMID:
41257892
Database:
MEDLINE

Weitere Informationen

Electrode placement variability poses a critical challenge in EEG-based motor imagery tasks, often resulting in reduced classification robustness. We present the Adaptive Channel Mixing Layer (ACML), a plug-and-play preprocessing module that dynamically adjusts input signal weights through a learnable transformation matrix based on inter-channel correlations. By leveraging the inherent spatial structure of EEG caps, ACML effectively compensates for electrode misalignments and noise, enhancing resilience to signal distortion. Experimental validation on two motor imagery datasets with varying channel counts demonstrated consistent improvements in accuracy (up to 1.4%), kappa scores (up to 0.018), and robust performance across subjects, using five neural network architectures including a state-of-the-art model (ATCNet). Notably, ACML requires minimal computational overhead and no task-specific hyperparameter tuning, ensuring compatibility with diverse applications. This method offers a robust and efficient solution for advancing EEG-based motor imagery classification, with potential applications in real-time brain-computer interface systems and neurorehabilitation.
(© 2025. The Author(s).)

Declarations. Competing interests: The authors declare no competing interests.