Treffer: Microfluidic Dielectrophoretic Platform for the Manipulation of Brucella abortus Bacteria: Toward Rapid Diagnostic Solutions.

Title:
Microfluidic Dielectrophoretic Platform for the Manipulation of Brucella abortus Bacteria: Toward Rapid Diagnostic Solutions.
Authors:
Acuña-Umaña K; Medical Device Engineering Master's Program, Instituto Tecnológico de Costa Rica (ITCR), Cartago, Costa Rica., García-Martínez E; School of Physics, Universidad De Costa Rica (UCR), San José, Costa Rica., Mairena-Salazar M; School of Physics, Universidad De Costa Rica (UCR), San José, Costa Rica., Ruiz-Villalobos N; Programa De Investigación en Enfermedades Tropicales, Escuela De Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica., Guzmán-Verri C; Programa De Investigación en Enfermedades Tropicales, Escuela De Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica., Torres-Castro K; Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York, USA., Lesser-Rojas L; School of Physics, Universidad De Costa Rica (UCR), San José, Costa Rica.; Research Center in Atomic, Nuclear and Molecular Sciences (CICANUM), Universidad De Costa Rica (UCR), San José, Costa Rica.
Source:
Electrophoresis [Electrophoresis] 2026 Jan; Vol. 47 (1), pp. 68-77. Date of Electronic Publication: 2025 Nov 13.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 8204476 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2683 (Electronic) Linking ISSN: 01730835 NLM ISO Abbreviation: Electrophoresis Subsets: MEDLINE
Imprint Name(s):
Publication: : Weinheim : Wiley-VCH
Original Publication: [Weinheim, Germany] : Verlag Chemie, [1980-
References:
M. M. Ardila, P. Cabarcas, Á. A. Flórez, et al., “Bovine Brucellosis in Dual‐Purpose Cattle Herds and Its Potential Economic Impact in the Colombian Caribbean Region,” Veterinary Research Communications 49 (2024): 39, https://doi.org/10.1007/s11259‐024‐10606‐7.
C. Laine, V. Johnson, H. M. Scott, and A. Arenas‐Gamboa, “Global Estimate of Human Brucellosis Incidence,”  Emerging Infectious Disease Journal 29 (2023): 1789, https://doi.org/10.3201/eid2909.230052.
G. Hernández‐Mora, N. Ruiz‐Villalobos, R. Bonilla‐Montoya, et al., “Epidemiology of Bovine Brucellosis in Costa Rica: Lessons Learned From Failures in the Control of the Disease,” PLoS ONE 12 (2017): e0182380, https://doi.org/10.1371/journal.pone.0182380.
G. Arteaga‐Troncoso, M. Luna‐Alvarez, L. Hernández‐Andrade, et al., “Modelling the Unidentified Abortion Burden from Four Infectious Pathogenic Microorganisms (Leptospira interrogans, Brucella abortus, Brucella ovis, and Chlamydia abortus) in Ewes Based on Artificial Neural Networks Approach: The Epidemiological Basis for a Control Policy,” Animals 13 (2023): 2955, https://doi.org/10.3390/ani13182955.
D. Bardhan, S. Kumar, M. R. Verma, and Y. Bangar, “Economic Losses Due to Brucellosis in India,” Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases 41 (2020): 19–30, https://doi.org/10.5958/0974‐0147.2020.00002.1.
World Organization for Animal Health, "Brucellosis," (2025), https://www.woah.org/en/disease/brucellosis/.
M. J. Corbel, “Brucellosis in humans and animals Food and Agriculture Organization of the United Nations,” World Health Organization, and World Organization for Animal Health, (2006), https://iris.who.int/handle/10665/43597.
K. J. Land, D. I. Boeras, X.‐S. Chen, A. R. Ramsay, and R. W. Peeling, “REASSURED Diagnostics to Inform Disease Control Strategies, Strengthen Health Systems and Improve Patient Outcomes,” Nature Microbiology 4 (2019): 46–54, https://doi.org/10.1038/s41564‐018‐0295‐3.
M. Suárez‐Esquivel, E. Chaves‐Olarte, E. Moreno, and C. Guzmán‐Verri, “Brucella Genomics: Macro and Micro Evolution,” International Journal of Molecular Sciences 21 (2020): 7749, https://doi.org/10.3390/ijms21207749.
G. Xing, W. Zhang, N. Li, Q. Pu, and J.‐M. Lin, “Recent Progress on Microfluidic Biosensors for Rapid Detection of Pathogenic Bacteria,” Chinese Chemical Letters 33 (2022): 1743–1751, https://doi.org/10.1016/j.cclet.2021.08.073.
Y. Wu, “Discrete Particle Dynamics Models: Computational Aspects and Applications” (doctoral dissertations and master's theses, Embry‐Riddle Aeronautical University, 2024).
F. S. Rizi, S. Talebi, M. K. D. Manshadi, and M. Mohammadi, “Combination of the Insulator‐Based Dielectrophoresis and Hydrodynamic Methods for Separating Bacteria Smaller Than 3 µm in Bloodstream Infection: Numerical Simulation Approach,” Separation Science Plus 6 (2023): 2200055, https://doi.org/10.1002/sscp.202200055.
K. Torres‐Castro, K. Acuña‐Umaña, L. Lesser‐Rojas, and D. R. Reyes, “Microfluidic Blood Separation: Key Technologies and Critical Figures of Merit,” Micromachines 14 (2023): 2117, https://doi.org/10.3390/mi14112117.
B. Sarno, D. Heineck, M. J. Heller, and S. D. Ibsen, “Dielectrophoresis: Developments and Applications From 2010 to 2020,” Electrophoresis 42 (2021): 539–564, https://doi.org/10.1002/elps.202000156.
N. Hill and B. H. Lapizco‐Encinas, “Continuous Flow Separation of Particles With Insulator‐Based Dielectrophoresis Chromatography,” Analytical and Bioanalytical Chemistry 412 (2020): 3891–3902, https://doi.org/10.1007/s00216‐019‐02308‐w.
M. Yamada, M. Nakashima, and M. Seki, “Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel,” Analytical Chemistry 76 (2004): 5465–5471, https://doi.org/10.1021/ac049863r.
L. C. Jellema, T. Mey, S. Koster, and E. Verpoorte, “Charge‐Based Particle Separation in Microfluidic Devices Using Combined Hydrodynamic and Electrokinetic Effects,” Lab on a Chip 9 (2009): 1914–1925, https://doi.org/10.1039/b819054b.
S. Li, M. Li, K. Bougot‐Robin, et al., “High‐Throughput Particle Manipulation by Hydrodynamic, Electrokinetic, and Dielectrophoretic Effects in an Integrated Microfluidic Chip,” Biomicrofluidics 7 (2013): 024106, https://doi.org/10.1063/1.4795856.
A. Martínez‐Brenes, K. Torres‐Castro, R. Marín‐Benavides, et al., “Combined Electrokinetic Manipulations of Pathogenic Bacterial Samples in Low‐Cost Fabricated Dielectrophoretic Devices,” AIP Advances 9 (2019): 115303, https://doi.org/10.1063/1.5049148.
A. di Toma, G. Brunetti, M. S. Chiriacò, F. Ferrara, and C. Ciminelli, “A Novel Hybrid Platform for Live/Dead Bacteria Accurate Sorting by On‐Chip DEP Device,” International Journal of Molecular Sciences 24 (2023): 7077, https://doi.org/10.3390/ijms24087077.
S. Jun, C. Chun, K. Ho, and Y. Li, “Design and Evaluation of a Millifluidic Insulator‐Based Dielectrophoresis (DEP) Retention Device to Separate Bacteria From Tap Water,” Water 13 (2021): 1678, https://doi.org/10.3390/w13121678.
S. Park, Y. Zhang, T.‐H. Wang, and S. Yang, “Continuous Dielectrophoretic Bacterial Separation and Concentration From Physiological Media of High Conductivity,” Lab on a Chip 11 (2011): 2893–2900, https://doi.org/10.1039/c1lc20307j.
J. Zhang, Z. Song, Q. Liu, and Y. Song, “Recent Advances in Dielectrophoresis‐Based Cell Viability Assessment,” Electrophoresis 41 (2020): 917–932, https://doi.org/10.1002/elps.201900340.
S. Ganesan and A. V. Juliet, “Computational Analysis on Design and Optimization of Microfluidic Channel for the Separation of Staphylococcus aureus From Blood Using Dielectrophoresis,” Journal of the Brazilian Society of Mechanical Sciences and Engineering 45 (2023): 624, https://doi.org/10.1007/s40430‐023‐04523‐0.
C. Guzmán‐Verri, L. Manterola, A. Sola‐Landa, et al., “The Two‐Component System BvrR/BvrS Essential for Brucella abortus Virulence Regulates the Expression of Outer Membrane Proteins With Counterparts in Members of the Rhizobiaceae,” Proceedings of the National Academy of Sciences of the United States of America 99 (2002): 12375–12380, https://doi.org/10.1073/pnas.192439399.
K. Torres‐Castro, C. Honrado, W. B. Varhue, V. Farmehini, and N. S. Swami, “High‐Throughput Dynamical Analysis of Dielectrophoretic Frequency Dispersion of Single Cells Based on Deflected Flow Streamlines,” Analytical and Bioanalytical Chemistry 412 (2020): 3847–3857, https://doi.org/10.1007/s00216‐020‐02467‐1.
X. Huang, K. Torres‐Castro, W. Varhue, A. Rane, A. Rasin, and N. S. Swami, “On‐Chip Microfluidic Buffer Swap of Biological Samples in‐Line With Downstream Dielectrophoresis,” Electrophoresis 43 (2022): 1275–1282, https://doi.org/10.1002/elps.202100304.
M. Z. Ansar BI, M. Y. Caffiyar, and M. Kashif A, “Microfluidic Device for Multitarget Separation Using DEP Techniques and Its Applications in Clinical Research,” in 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII) (IEEE, 2020), https://doi.org/10.1109/ICBSII49132.2020.9167655.
A. A. Memon, M. A. Memon, K. Bhatti, et al., “Modelling and Simulation of Fluid Flow Through a Circular Cylinder With High Reynolds Number: A COMSOL Multiphysics Study,” Journal of Mathematics 2022 (2022): 5282980, https://doi.org/10.1155/2022/5282980.
Q. Chen and Y. J. Yuan, “A Review of Polystyrene Bead Manipulation by Dielectrophoresis,” RSC Advances 9 (2019): 4963–4981, https://doi.org/10.1039/C8RA09017C.
J. Cottet, O. Fabregue, C. Berger, F. Buret, P. Renaud, and M. Frénéa‐Robin, “MyDEP: A New Computational Tool for Dielectric Modeling of Particles and Cells,” Biophysical Journal 116 (2019): 12–18, https://doi.org/10.1016/j.bpj.2018.11.021.
R. E. Fernandez, A. Rohani, V. Farmehini, and N. S. Swami, “Review: Microbial Analysis in Dielectrophoretic Microfluidic Systems,” Analytica Chimica Acta 966 (2017): 11–33, https://doi.org/10.1016/j.aca.2017.02.024.
R. Pethig, “Limitations of the Clausius‐Mossotti Function Used in Dielectrophoresis and Electrical Impedance Studies of Biomacromolecules,” Electrophoresis 40 (2019): 2575–2583, https://doi.org/10.1002/elps.201900057.
Y.‐J. Lo and U. Lei, “Measurement of the Real Part of the Clausius–Mossotti Factor of Dielectrophoresis for Brownian Particles,” Electrophoresis 41 (2020): 137–147, https://doi.org/10.1002/elps.201900345.
B. H. Lapizco‐Encinas, Y. V. Zhang, P. P. Gqamana, J. Lavicka, and F. Foret, “Capillary Electrophoresis as a Sample Separation Step to Mass Spectrometry Analysis: A Primer,” TrAC Trends in Analytical Chemistry 164 (2023): 117093, https://doi.org/10.1016/j.trac.2023.117093.
R. Bhadauria and N. R. Aluru, “Multiscale Modeling of Electroosmotic Flow: Effects of Discrete Ion, Enhanced Viscosity, and Surface Friction,” Journal of Chemical Physics 146 (2017): 184106, https://doi.org/10.1063/1.4982731.
N. G. Green, A. Ramos, A. González, H. Morgan, and A. Castellanos, “Fluid Flow Induced by Nonuniform ac Electric Fields in Electrolytes on Microelectrodes. III. Observation of Streamlines and Numerical Simulation,” Physical Review E 66 (2002): 026305, https://doi.org/10.1103/PhysRevE.66.026305.
A. Ramos, H. Morgan, N. G. Green, and A. Castellano, “Ac Electrokinetics: A Review of Forces in Microelectrode Structures,” Journal of Physics D: Applied Physics 31 (1998): 2338, https://doi.org/10.1088/0022‐3727/31/18/021.
M. Z. Bazant and T. M. Squires, “Induced‐Charge Electrokinetic Phenomena: Theory and Microfluidic Applications,” Physical Review Letter 92 (2004): 066101, https://doi.org/10.1103/PhysRevLett.92.066101.
H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler, and R. E. Goldstein, “Confinement Stabilizes a Bacterial Suspension Into a Spiral Vortex,” Physical Review Letter 110 (2013): 268102, https://doi.org/10.1103/PhysRevLett.110.268102.
Z. Wu and D. Li, “Micromixing Using Induced‐Charge Electrokinetic Flow,” Electrochimica Acta 53 (2008): 5827–5835, https://doi.org/10.1016/j.electacta.2008.03.039.
A. Ramos, A. González, A. Castellanos, N. G. Green, and H. Morgan, “Pumping of Liquids With AC Voltages Applied to Asymmetric Pairs of Microelectrodes,” Physical Review E 67 (2003): 056302, https://doi.org/10.1103/PhysRevE.67.056302.
A. Dehkharghani, N. Waisbord, J. Dunkel, and J. S. Guasto, “Bacterial Scattering in Microfluidic Crystal Flows Reveals Giant Active Taylor–Aris Dispersion,” Proceedings of the National Academy of Sciences of the United States of America 116 (2019): 11119–11124, https://doi.org/10.1073/pnas.1819613116.
D. Scheidweiler, F. Miele, H. Peter, T. J. Battin, and P. de Anna, “Trait‐Specific Dispersal of Bacteria in Heterogeneous Porous Environments: From Pore to Porous Medium Scale,” Journal of the Royal Society Interface 17 (2020): 20200046, https://doi.org/10.1098/rsif.2020.0046.
Contributed Indexing:
Keywords: Brucella abortus; computational modeling; dielectrophoresis; microfluidics; particle manipulation
Entry Date(s):
Date Created: 20251113 Date Completed: 20260122 Latest Revision: 20260122
Update Code:
20260123
DOI:
10.1002/elps.70055
PMID:
41230769
Database:
MEDLINE

Weitere Informationen

Brucellosis is a neglected zoonotic disease that continues to impact global public health and livestock economies, particularly in regions with limited diagnostic infrastructure. Its causative agent, Brucella abortus, is difficult to detect due to its intracellular lifestyle and the nonspecific symptoms it causes in humans. This study demonstrates the experimental application of dielectrophoresis (DEP) in a microfluidic device for the selective manipulation of polystyrene beads and inactivated B. abortus bacteria. By tuning the frequency and medium conductivity, reliable combined negative dielectrophoretic (nDEP) and hydrodynamic flow responses were achieved, leading to the deflection of bacterial cells across the microchannel within a critical vertical window for particle control. Distinct particle trajectories were observed under varying electric field conditions, confirming effective separation without the need for labels or biochemical markers, except for visual validation. This label-free strategy enables rapid sample processing and has the potential to be integrated into portable platforms for on-site diagnostics. The results highlight the feasibility of DEP-based approaches for pathogen separation and support their future implementation in brucellosis surveillance and point-of-care testing.
(© 2025 Wiley‐VCH GmbH.)