Treffer: Do real or hypothetical rewards facilitate creative performance? The effect of reward on creative problem solving.
Akbari Chermahini, S., & Hommel, B. (2012b). Creative mood swings: Divergent and convergent thinking affect mood in opposite ways. Psychological Research, 76(5), 634–640. https://doi.org/10.1007/s00426-011-0358-z. (PMID: 10.1007/s00426-011-0358-z21695470)
Amabile, T. M., Hennessey, B. A., & Grossman, B. S. (1986). Social influences on creativity: The effects of contracted-for reward. Journal of Personality and Social Psychology, 50(1), 14–23. https://doi.org/10.1037/0022-3514.50.1.14. (PMID: 10.1037/0022-3514.50.1.143701569)
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4), 1036–1060. https://doi.org/10.1037/0033-295X.111.4.1036. (PMID: 10.1037/0033-295X.111.4.103615482072)
Anderson, J. R., Anderson, J. F., Ferris, J. L., Fincham, J. M., & Jung, K. J. (2009). Lateral inferior prefrontal cortex and anterior cingulate cortex are engaged at different stages in the solution of insight problems. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10799–10804. https://doi.org/10.1073/pnas.0903953106. (PMID: 10.1073/pnas.0903953106195416572705531)
Benedek, M., & Fink, A. (2019). Toward a neurocognitive framework of creative cognition: The role of memory, attention, and cognitive control. Current Opinion in Behavioral Sciences, 27, 116–122. https://doi.org/10.1016/j.cobeha.2018.11.002. (PMID: 10.1016/j.cobeha.2018.11.002)
Boot, N., Baas, M., van Gaal, S., Cools, R., & De Dreu, C. K. W. (2017a). Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neuroscience and Biobehavioral Reviews, 78, 13–23. https://doi.org/10.1016/j.neubiorev.2017.04.007. (PMID: 10.1016/j.neubiorev.2017.04.00728419830)
Boot, N., Nevicka, B., & Baas, M. (2017b). Subclinical symptoms of attention-deficit/hyperactivity disorder (ADHD) are associated with specific creative processes. Personality and Individual Differences, 114, 73–81. https://doi.org/10.1016/j.paid.2017.03.050. (PMID: 10.1016/j.paid.2017.03.050)
Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. Behavior Research Methods Instruments & Computers, 35(4), 634–639. (PMID: 10.3758/BF03195543)
Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9(7), 322–328. (PMID: 10.1016/j.tics.2005.05.01215953756)
Byron, K., & Khazanchi, S. (2012). Rewards and creative performance: A meta-analytic test of theoretically derived hypotheses. Psychological Bulletin, 138(4), 809. (PMID: 10.1037/a002765222409506)
Chi, R. P., & Snyder, A. W. (2011). Facilitate insight by non-invasive brain stimulation. PLoS One, 6(2), e16655. https://doi.org/10.1371/journal.pone.0016655. (PMID: 10.1371/journal.pone.0016655213117463032738)
Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Academic.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic.
Cristofori, I., Salvi, C., Beeman, M., & Grafman, J. (2018). The effects of expected reward on creative problem solving. Cognitive, Affective & Behavioral Neuroscience, 18(5), 925–931. https://doi.org/10.3758/s13415-018-0613-5. (PMID: 10.3758/s13415-018-0613-5)
Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18(3), 391–404. (PMID: 10.1207/s15326934crj1803_13)
Cui, C., Zhang, K., Du, X. M., Sun, X., & Luo, J. (2020). Event-related potentials support the mnemonic effect of spontaneous insight solution. Psychological Research. https://doi.org/10.1007/s00426-020-01421-1. (PMID: 10.1007/s00426-020-01421-132995910)
Cui, C., Wang, K., Long, Y., & Jiang, Y. (2021). Differential modulation of creative problem solving by monetary rewards: Electrophysiological evidence. Current Psychology. https://doi.org/10.1007/s12144-021-02054-2. (PMID: 10.1007/s12144-021-02054-2)
Cui, C., Yuan, Y., & Jiang, Y. (2024). Can rewards enhance creativity? Exploring the effects of real and hypothetical rewards on creative problem solving and neural mechanisms. Behavioral And Brain Functions, 20(1), 37. (PMID: 10.1186/s12993-024-00264-93973271811681702)
D’Ardenne, K., McClure, S. M., Nystrom, L. E., & Cohen, J. D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science, 319(5867), 1264–1267. (PMID: 10.1126/science.115060518309087)
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6), 627. (PMID: 10.1037/0033-2909.125.6.62710589297)
De Dreu, C. K., Nijstad, B. A., Baas, M., Wolsink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38(5), 656–669. (PMID: 10.1177/014616721143579522301457)
Dietrich, A. (2007). Who’s afraid of a cognitive neuroscience of creativity? Methods, 42(1), 22–27. https://doi.org/10.1016/j.ymeth.2006.12.009. (PMID: 10.1016/j.ymeth.2006.12.00917434412)
Dietrich, A. (2019). Where in the brain is creativity: A brief account of a wild-goose chase. Current Opinion in Behavioral Sciences, 27, 36–39. https://doi.org/10.1016/j.cobeha.2018.09.001. (PMID: 10.1016/j.cobeha.2018.09.001)
Du, X., Zhang, K., Wang, J., Luo, J., & Luo, J. (2017). Can people recollect well and change their source memory bias of aha! experiences? The Journal of Creative Behavior, 51(1), 45–56. https://doi.org/10.1002/jocb.85. (PMID: 10.1002/jocb.85)
Eisenberger, R., & Aselage, J. (2009). Incremental effects of reward on experienced performance pressure: Positive outcomes for intrinsic interest and creativity. Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 30(1), 95–117. (PMID: 10.1002/job.543)
Eisenberger, R., & Rhoades, L. (2001). Incremental effects of reward on creativity. Journal Of Personality And Social Psychology, 81(4), 728–741. https://doi.org/10.1037/0022-3514.81.4.728. (PMID: 10.1037/0022-3514.81.4.72811642357)
Eisenberger, R., & Shanock, L. (2003). Rewards, intrinsic motivation, and creativity: A case study of conceptual and methodological isolation. Creativity Research Journal, 15(2–3), 121–130. https://doi.org/10.1080/10400419.2003.9651404. (PMID: 10.1080/10400419.2003.9651404)
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical g*power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149. (PMID: 10.3758/BRM.41.4.114919897823)
Festinger, L. (1957). A theory of cognitive dissonance. Stanford University Press.
Frömer, R., Lin, H., & Wolf, D. (2021). Expectations of reward and efficacy guide cognitive control allocation. Nature Communications, 12, 1030. https://doi.org/10.1038/s41467-021-21315-z. (PMID: 10.1038/s41467-021-21315-z335896267884731)
Goldman-Rakic, P. S., Muly, E. C. 3rd, & Williams, G. V. (2000). D(1) receptors in prefrontal cells and circuits. Brain Research: Brain Research Reviews, 31(2–3), 295–301. https://doi.org/10.1016/s0165-0173(99)00045-4. (PMID: 10.1016/s0165-0173(99)00045-410719156)
Guilford, J. P. (1967). The nature of human intelligence.
Hennessey, B. A., & Amabile, T. M. (2010). Creativity. Annual Review of Psychology, 61, 569–598. https://doi.org/10.1146/annurev.psych.093008.100416. (PMID: 10.1146/annurev.psych.093008.10041619575609)
Hinvest, N. S., & Anderson, I. M. (2010). The effects of real versus hypothetical reward on delay and probability discounting. Quarterly Journal of Experimental Psychology, 63(6), 1072–1084. (PMID: 10.1080/17470210903276350)
Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8(11), 494–500. https://doi.org/10.1016/j.tics.2004.08.007. (PMID: 10.1016/j.tics.2004.08.00715491903)
Hommel, B. (2015). Between Persistence and Flexibility. In Advances in motivation science (pp. 33–67). https://doi.org/10.1016/bs.adms.2015.04.003.
Hommel, B., & Wiers, R. W. (2017). Towards a unitary approach to human action control. Trends in Cognitive Sciences, 21(12), 940–949. https://doi.org/10.1016/j.tics.2017.09.009. (PMID: 10.1016/j.tics.2017.09.00929150000)
Huang, F., Fan, J., & Luo, J. (2015). The neural basis of novelty and appropriateness in processing of creative chunk decomposition. NeuroImage, 113, 122–132. https://doi.org/10.1016/j.neuroimage.2015.03.030. (PMID: 10.1016/j.neuroimage.2015.03.03025797834)
Huang, F., He, M., & Luo, J. (2017). The cognitive and neural mechanism of chunk decomposition: A particular form of insight. Chinese Science Bulletin, 62(31), 3594–3604. https://doi.org/10.1360/N972017-00693. (PMID: 10.1360/N972017-00693)
Huang, F., Zhao, Q., Zhou, Z., & Luo, J. (2019). People got lost in solving a set of similar problems. NeuroImage, 186, 192–199. https://doi.org/10.1016/j.neuroimage.2018.10.063. (PMID: 10.1016/j.neuroimage.2018.10.06330449716)
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., Reber, P. J., & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), E97. https://doi.org/10.1371/journal.pbio.0020097. (PMID: 10.1371/journal.pbio.002009715094802387268)
Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999). Constraint relaxation and chunk decomposition in insight problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(6), 1534.
Kounios, J., Fleck, J. I., Green, D. L., Payne, L., Stevenson, J. L., Bowden, E. M., & Jung-Beeman, M. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281–291. https://doi.org/10.1016/j.neuropsychologia.2007.07.013. (PMID: 10.1016/j.neuropsychologia.2007.07.01317765273)
Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22(3), 607–615. (PMID: 10.1093/cercor/bhr13421680848)
Luo, J., Niki, K., & Knoblich, G. (2006). Perceptual contributions to problem solving: Chunk decomposition of Chinese characters. Brain Research Bulletin, 70(4–6), 430–443. https://doi.org/10.1016/j.brainresbull.2006.07.005. (PMID: 10.1016/j.brainresbull.2006.07.00517027779)
Memelink, J., & Hommel, B. (2013). Intentional weighting: A basic principle in cognitive control. Psychological Research Psychologische Forschung, 77(3), 249–259. https://doi.org/10.1007/s00426-012-0435-y. (PMID: 10.1007/s00426-012-0435-y22526717)
Mohr, P. N., Li, S. C., & Heekeren, H. R. (2010). Neuroeconomics and aging: Neuromodulation of economic decision making in old age. Neuroscience and Biobehavioral Reviews, 34(5), 678–688. https://doi.org/10.1016/j.neubiorev.2009.05.010. (PMID: 10.1016/j.neubiorev.2009.05.01019501615)
Nijstad, B. A., De Dreu, C. K. W., Rietzschel, E. F., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21(1), 34–77. https://doi.org/10.1080/10463281003765323. (PMID: 10.1080/10463281003765323)
Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Hochenberger, R., Sogo, H., Kastman, E., & Lindelov, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y. (PMID: 10.3758/s13428-018-01193-y307342066420413)
Rastelli, C., Greco, A., De Pisapia, N., & Finocchiaro, C. (2022). Balancing novelty and appropriateness leads to creative associations in children. PNAS Nexus, 1(5), pgac273. (PMID: 10.1093/pnasnexus/pgac273367123309802071)
Ren, J., Huang, F., Zhou, Y., Zhuang, L., Xu, J., Gao, C., Qin, S., & Luo, J. (2020a). The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs. Neuroimage, 214, Article 116751. https://doi.org/10.1016/j.neuroimage.2020.116751. (PMID: 10.1016/j.neuroimage.2020.11675132194284)
Ren, J., Huang, F., Gao, C., Gott, J., Schoch, S. F., Qin, S., Dresler, M., & Luo, J. (2022). Functional lateralization of the medial temporal lobe in novel associative processing during creativity evaluation. Cerebral Cortex. https://doi.org/10.1093/cercor/bhac129. (PMID: 10.1093/cercor/bhac129351383719930633)
Reverberi, C., Toraldo, A., D’Agostini, S., & Skrap, M. (2005). Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain, 128(Pt 12), 2882–2890. https://doi.org/10.1093/brain/awh577. (PMID: 10.1093/brain/awh57715975944)
Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24(1), 66–75. (PMID: 10.1080/10400419.2012.652929)
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92–96. https://doi.org/10.1080/10400419.2012.650092. (PMID: 10.1080/10400419.2012.650092)
Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 22(6), 1814–1819. https://doi.org/10.3758/s13423-015-0845-0. (PMID: 10.3758/s13423-015-0845-0)
Sio, U. N., & Ormerod, T. C. (2009). Does incubation enhance problem solving? A meta-analytic review. Psychological Bulletin, 135(1), 94–120. https://doi.org/10.1037/a0014212. (PMID: 10.1037/a001421219210055)
Tang, S., Jia, L., Liu, M., Ren, J., Li, F., Luo, J., & Huang, F. (2021). The dynamic monitoring and control mechanism in problem solving: Evidence from theta and alpha oscillations. International Journal of Psychophysiology. https://doi.org/10.1016/j.ijpsycho.2021.10.010. (PMID: 10.1016/j.ijpsycho.2021.10.01034699862)
Vartanian, O. (2009). Variable attention facilitates creative problem solving. Psychology of Aesthetics Creativity and the Arts, 3(1), 57–59. https://doi.org/10.1037/a0014781. (PMID: 10.1037/a0014781)
Wagenmakers, E. J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., Selker, R., Gronau, Q. F., Smira, M., Epskamp, S., Matzke, D., Rouder, J. N., & Morey, R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25(1), 35–57. https://doi.org/10.3758/s13423-017-1343-3. (PMID: 10.3758/s13423-017-1343-3)
Wang, X., Chen, Q., Zhuang, K., Zhang, J., Cortes, R. A., Holzman, D. D., & Qiu, J. (2024). Semantic associative abilities and executive control functions predict novelty and appropriateness of idea generation. Communications Biology, 7(1), 703. (PMID: 10.1038/s42003-024-06405-03884946111161622)
Wu, L., Knoblich, G., Wei, G., & Luo, J. (2009). How perceptual processes help to generate new meaning: An EEG study of chunk decomposition in Chinese characters. Brain Research, 1296, 104–112. https://doi.org/10.1016/j.brainres.2009.08.023. (PMID: 10.1016/j.brainres.2009.08.02319695234)
Wu, L., Knoblich, G., & Luo, J. (2013). The role of chunk tightness and chunk familiarity in problem solving: Evidence from erps and fMRI. Human Brain Mapping, 34(5), 1173–1186. https://doi.org/10.1002/hbm.21501. (PMID: 10.1002/hbm.2150122328466)
Yang, W., Green, A. E., Chen, Q., Kenett, Y. N., Sun, J., Wei, D., & Qiu, J. (2022). Creative problem solving in knowledge-rich contexts. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2022.06.012. (PMID: 10.1016/j.tics.2022.06.01235868956)
Zhang, W., Sjoerds, Z., & Hommel, B. (2020). Metacontrol of human creativity: The neurocognitive mechanisms of convergent and divergent thinking. Neuroimage, 210, Article 116572. https://doi.org/10.1016/j.neuroimage.2020.116572. (PMID: 10.1016/j.neuroimage.2020.11657231972282)
Weitere Informationen
While reward cues have long been considered to enhance creative performance, little is known about can rewards affect creative problem solving by manipulate the flexibility and persistence state. Real and hypothetical rewards and two creative problem-solving tasks were used to answer this question. We tested the hypothesis that real rewards would positively affect creativity tasks that benefit from a persistence state (e.g., compound remote associate, CRA), while hypothetical rewards would positively impact tasks that benefit from a flexibility state (e.g., chunk decomposition, CD). Additionally, we hypothesized that low rewards would yield better solution performance than high rewards. The results revealed that hypothetical-high rewards resulted in lower solution performance compared to other reward conditions. Furthermore, hypothetical rewards enhanced performance in novel CD tasks requiring reconfiguration. Participants motivated by real rewards exhibited higher persistence compared to those motivated by hypothetical rewards. Hypothetical rewards during the preparation interval induced a metacontrol bias favoring flexibility. These findings could lead to new views about how the reward impact a creative mindset.
(© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Declarations. Competing interests: The authors declare no competing interests.