Treffer: Correlation-Weighted 23 Na Magnetic Resonance Fingerprinting in the Brain.
Original Publication: London : Heyden & Son, 1988-
G. Madelin, J. S. Lee, R. R. Regatte, and A. Jerschow, “Sodium MRI: Methods and Applications,” Progress in Nuclear Magnetic Resonance Spectroscopy 79 (2014): 14–47, https://doi.org/10.1016/j.pnmrs.2014.02.001.
M. Petracca, L. Fleysher, N. Oesingmann, and M. Inglese, “Sodium MRI of Multiple Sclerosis,” NMR in Biomedicine 29, no. 2 (2016): 153–161, https://doi.org/10.1002/nbm.3289.
J. Krahe, I. Dogan, C. Didszun, et al., “Increased Brain Tissue Sodium Concentration in Friedreich Ataxia: A Multimodal MR Imaging Study,” NeuroImage: Clinical. 34 (2022): 103025, https://doi.org/10.1016/j.nicl.2022.103025.
E. Mellon, D. Pilkinton, C. Clark, et al., “Sodium MR Imaging Detection of Mild Alzheimer Disease: Preliminary Study,” American Journal of Neuroradiology 30, no. 5 (2009): 978–984, https://doi.org/10.3174/ajnr.A1495.
S. Mohamed, K. Herrmann, A. Adlung, et al., “Evaluation of Sodium (23Na) MR‐Imaging as a Biomarker and Predictor for Neurodegenerative Changes in Patients with Alzheimer's Disease,” In Vivo 35, no. 1 (2021): 429–435, https://doi.org/10.21873/invivo.12275.
A. Haeger, M. Bottlaender, J. Lagarde, et al., “What Can 7T Sodium MRI Tell Us About Cellular Energy Depletion and Neurotransmission in Alzheimer's Disease?,” Alzheimer's & Dementia 17, no. 11 (2021): 1843–1854, https://doi.org/10.1002/alz.12501.
T. Hashimoto, H. Ikehira, H. Fukuda, et al., “In Vivo Sodium‐23 MRI in Brain Tumors: Evaluation of Preliminary Clinical Experience,” American Journal of Physiologic Imaging 6, no. 2 (1991): 74–80.
L. P. Nunes Neto, G. Madelin, T. P. Sood, et al., “Quantitative Sodium Imaging and Gliomas: A Feasibility Study,” Neuroradiology 60, no. 8 (2018): 795–802, https://doi.org/10.1007/s00234‐018‐2041‐1.
F. Boada, Y. Qian, E. Nemoto, et al., “Sodium MRI and the Assessment of Irreversible Tissue Damage During Hyper‐Acute Stroke,” Translational Stroke Research 3, no. 2 (2012): 236–245, https://doi.org/10.1007/s12975‐012‐0168‐7.
T. Gerhalter, A. M. Chen, S. Dehkharghani, et al., “Global Decrease in Brain Sodium Concentration After Mild Traumatic Brain Injury,” Brain Communications 3, no. 2 (2021): fcab051, https://doi.org/10.1093/braincomms/fcab051.
W. D. Rooney, “A Comprehensive Approach to the Analysis and Interpretation of the Resonances of Spins 3/2 From Living Systems,” NMR in Biomedicine 4, no. 5 (1991): 209–226, https://doi.org/10.1002/nbm.1940040502.
J. S. Lee, R. R. Regatte, and A. Jerschow, “Optimal Excitation of N23a Nuclear Spins in the Presence of Residual Quadrupolar Coupling and Quadrupolar Relaxation,” Journal of Chemical Physics 131, no. 17 (2009): 174501, https://doi.org/10.1063/1.3253970.
D. Ma, V. Gulani, N. Seiberlich, et al., “Magnetic Resonance Fingerprinting,” Nature 495, no. 7440 (2013): 187–192, https://doi.org/10.1038/nature11971.
M. A. Cloos, F. Knoll, T. Zhao, et al., “Multiparametric Imaging With Heterogeneous Radiofrequency Fields,” Nature Communications 7, no. 1 (2016): 12445, https://doi.org/10.1038/ncomms12445.
A. Panda, B. B. Mehta, S. Coppo, et al., “Magnetic Resonance Fingerprinting – An Overview,” Current Opinion in Biomedical Engineering 3 (2017): 56–66, https://doi.org/10.1016/j.cobme.2017.11.001.
B. Mehta, S. Coppo, F. McGivney, et al., “Magnetic Resonance Fingerprinting: A Technical Review,” Magnetic Resonance in Medicine 81, no. 1 (2019): 25–46, https://doi.org/10.1002/mrm.27403.
J. J. L. Hsieh and I. Svalbe, “Magnetic Resonance Fingerprinting: From Evolution to Clinical Applications,” Journal of Medical Radiation Sciences 67, no. 4 (2020): 333–344, https://doi.org/10.1002/jmrs.413.
F. J. Kratzer, S. Flassbeck, A. M. Nagel, et al., “Sodium Relaxometry Using 23Na MR Fingerprinting: A Proof of Concept,” Magnetic Resonance in Medicine 84, no. 5 (2020): 2577–2591, https://doi.org/10.1002/mrm.28316.
F. J. Kratzer, S. Flassbeck, S. Schmitter, et al., “3D Sodium (23Na) Magnetic Resonance Fingerprinting for Time‐Efficient Relaxometric Mapping,” Magnetic Resonance in Medicine 86, no. 5 (2021): 2412–2425, https://doi.org/10.1002/mrm.28873.
A. Gilles, A. M. Nagel, and G. Madelin, “Multipulse Sodium Magnetic Resonance Imaging for Multicompartment Quantification: Proof‐of‐Concept,” Scientific Reports 7, no. 1 (2017): 17435, https://doi.org/10.1038/s41598‐017‐17582‐w.
A. M. Nagel, M. Bock, C. Hartmann, et al., “The Potential of Relaxation‐Weighted Sodium Magnetic Resonance Imaging as Demonstrated on Brain Tumors,” Investigative Radiology 46, no. 9 (2011): 539–547.
S. C. Niesporek, R. Umathum, T. M. Fiedler, P. Bachert, M. E. Ladd, and A. M. Nagel, “Improved T2*$$ {T}_2^{\ast } $$ determination in 23$$ {}^{23} $$ Na, 35$$ {}^{35} $$ Cl, and 17$$ {}^{17} $$ O MRI using iterative partial volume correction based on 1$$ {}^1 $$ H MRI segmentation,” Magnetic Resonance Materials in Physics, Biology and Medicine 30, no. 6 (2017): 519–536, https://doi.org/10.1007/s10334‐017‐0623‐2.
Y. Blunck, S. Josan, S. Taqdees, et al., “3D‐Multi‐Echo Radial Imaging of 23Na (3D‐MERINA) for Time‐Efficient Multi‐Parameter Tissue Compartment Mapping,” Magnetic Resonance in Medicine 79, no. 4 (2018): 1950–1961, https://doi.org/10.1002/mrm.26848.
J. Pipe, N. Zwart, E. Aboussouan, R. K. Robison, A. Devaraj, and K. Johnson, “A New Design and Rationale for 3D Orthogonally Oversampled K‐Space Trajectories,” Magnetic Resonance in Medicine 66, no. 5 (2011): 1303–1311, https://doi.org/10.1002/mrm.22918.
R. W. Stobbe and C. Beaulieu, “Residual Quadrupole Interaction in Brain and its Effect on Quantitative Sodium Imaging,” NMR in Biomedicine 29, no. 2 (2016): 119–128.
L. V. Gast, T. Platt, A. M. Nagel, and T. Gerhalter, “Recent Technical Developments and Clinical Research Applications of Sodium (23Na) MRI,” Progress in Nuclear Magnetic Resonance Spectroscopy 138 (2023): 1–51, https://doi.org/10.1016/j.pnmrs.2023.04.002.
M. H. Levitt, “Composite Pulses,” Progress in Nuclear Magnetic Resonance Spectroscopy 18, no. 2 (1986): 61–122.
R. K. Robison, A. G. Anderson, III, and J. G. Pipe, “Three‐Dimensional Ultrashort Echo‐Time Imaging Using a FLORET Trajectory,” Magnetic Resonance in Medicine 78, no. 3 (2017): 1038–1049, https://doi.org/10.1002/mrm.26500.
Z. Yu, G. Madelin, D. K. Sodickson, and M. A. Cloos, “Simultaneous Proton Magnetic Resonance Fingerprinting and Sodium MRI,” Magnetic Resonance in Medicine 83, no. 6 (2020): 2232–2242, https://doi.org/10.1002/mrm.28073.
G. G. Rodriguez, Z. Yu, L. F. O'Donnell, L. Calderon, M. A. Cloos, and G. Madelin, “Repeatability of Simultaneous 3D 1H MRF/23Na MRI in Brain at 7 T,” Scientific Reports 12, no. 1 (2022): 14156, https://doi.org/10.1038/s41598‐022‐18388‐1.
R. Saidi, W. Bouaguel, and N. Essoussi, Hybrid Feature Selection Method Based on the Genetic Algorithm and Pearson Correlation Coefficient (Springer International Publishing, 2019), 3–24.
A. Coste, F. Boumezbeur, A. Vignaud, et al., “Tissue Sodium Concentration and Sodium T1 Mapping of the Human Brain at 3T Using a Variable Flip Angle Method,” Magnetic Resonance Imaging 58 (2019): 116–124, https://doi.org/10.1016/j.mri.2019.01.015.
P. Y. Chen and P. M. Popovich, Correlation: Parametric and Nonparametric Measures (SAGE Publications, 2002).
M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance (John Wiley & Sons Ltd, 2008).
M. Tang, T. Chen, X. Zhang, and X. H. H, “GRE T2*‐Weighted MRI: Principles and Clinical Applications,” BioMed Research International 2014 (2014): 312142, https://doi.org/10.1155/2014/312142.
B. Wang, B. Zhang, Z. Yu, et al., “A Radially Interleaved Sodium and Proton Coil Array for Brain MRI at 7 T,” NMR in Biomedicine 34, no. 12 (2021): e4608, https://doi.org/10.1002/nbm.4608.
J. G. Pipe and P. Menon, “Sampling Density Compensation in MRI: Rationale and an Iterative Numerical Solution,” Magnetic Resonance in Medicine 41, no. 1 (1999): 179–186, https://doi.org/10.1002/(SICI)1522‐2594(199901)41:1<179::AID‐MRM25>3.0.CO;2‐V.
N. R. Zwart, K. O. Johnson, and J. G. Pipe, “Efficient Sample Density Estimation by Combining Gridding and an Optimized Kernel,” Magnetic Resonance in Medicine 67, no. 3 (2012): 701–710, https://doi.org/10.1002/mrm.23041.
M. Bydder, D. Larkman, and J. Hajnal, “Combination of Signals From Array Coils Using Image‐Based Estimation of Coil Sensitivity Profiles,” Magnetic Resonance in Medicine 47, no. 3 (2002): 539–548, https://doi.org/10.1002/mrm.10092.
J. Veraart, D. S. Novikov, D. Christiaens, B. Ades‐aron, J. Sijbers, and E. Fieremans, “Denoising of Diffusion MRI Using Random Matrix Theory,” NeuroImage 142 (2016): 394–406, https://doi.org/10.1016/j.neuroimage.2016.08.016.
G. Lemberskiy, S. Baete, J. Veraart, T. Shepherd, E. Fieremans, and D. S. N, Achieving Sub‐Mm Clinical Diffusion MRI Resolution by Removing Noise During Reconstruction Using Random Matrix Theory (International Society for Magnetic Resonance in Medicine, 2019) Montreal, Canada.
G. Lemberskiy, S. Baete, J. Veraart, et al., “MRI Below the Noise Floor,” International Society for Magnetic Resonance in Medicine, (2020).
B. Ridley, A. M. Nagel, M. Bydder, et al., “Distribution of Brain Sodium Long and Short Relaxation Times and Concentrations: A Multi‐echo Ultra‐high Field 23Na MRI Study,” Scientific Reports 8, no. 1 (2018): 4357, https://doi.org/10.1038/s41598‐018‐22711‐0.
Y. Qian, T. Zhao, H. Zheng, J. Weimer, and F. E. Boada, “High‐Resolution Sodium Imaging of Human Brain at 7 T,” Magnetic Resonance in Medicine 68, no. 1 (2012): 227–233, https://doi.org/10.1002/mrm.23225.
SPM12, “Statistical Parametric Mapping,” The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK: University College London, 2012–2020.
J. M. Lommen, S. Flassbeck, N. G. Behl, et al., “Probing the Microscopic Environment of 23Na Ions in Brain Tissue by MRI: On the Accuracy of Different Sampling Schemes for the Determination of Rapid, Biexponential Decay at Low Signal‐to‐noise Ratio,” Magnetic Resonance in Medicine 80, no. 2 (2018): 571–584, https://doi.org/10.1002/mrm.27059.
L. Fleysher, N. Oesingmann, B. Stoeckel, R. I. Grossman, and M. Inglese, “Sodium Long‐Component T*2 Mapping in Human Brain at 7 Tesla,” Magnetic Resonance in Medicine 62, no. 5 (2009): 1338–1341, https://doi.org/10.1002/mrm.22133.
R. H. Riffenburgh, “Chapter 13 ‐ Finding Probabilities of Error,” in Statistics in Medicine (Second Edition), second ed., ed. R. H. Riffenburgh (Academic Press, 2006), 213–226.
E. M. Haacke, Z. P. Liang, and F. E. Boada, “Image Reconstruction Using Projection onto Convex Sets, Model Constraints, and Linear Prediction Theory for the Removal of Phase, Motion, and Gibbs Artifacts in Magnetic Resonance and Ultrasound Imaging,” Optical Engineering 29, no. 5 (1990): 555–566, https://doi.org/10.1117/12.55624.
B. Zhao, K. Setsompop, E. Adalsteinsson, et al., “Improved Magnetic Resonance Fingerprinting Reconstruction with Low‐Rank and Subspace Modeling,” Magnetic Resonance in Medicine 79, no. 2 (2018): 933–942, https://doi.org/10.1002/mrm.26701.
R. Duarte, A. Repetti, P. A. Gómez, M. Davies, and Y. Wiaux, “Greedy Approximate Projection for Magnetic Resonance Fingerprinting with Partial Volumes,” Inverse Problems 36, no. 3 (2020): 035015, https://doi.org/10.1088/1361‐6420/ab356d.
S. C. Kolbe, W. Syeda, Y. Blunck, et al., “Microstructural Correlates of 23Na Relaxation in Human Brain at 7 Tesla,” NeuroImage 211 (2020): 116609, https://doi.org/10.1016/j.neuroimage.2020.116609.
A. Tsang, R. W. Stobbe, and C. Beaulieu, “In Vivo Double Quantum Filtered Sodium Magnetic Resonance Imaging of Human Brain,” Magnetic Resonance in Medicine 73, no. 2 (2015): 497–504, https://doi.org/10.1002/mrm.25131.
W. Syeda, Y. Blunck, S. Kolbe, J. O. Cleary, and L. A. Johnston, “A Continuum of Components: Flexible Fast Fraction Mapping in Sodium MRI,” Magnetic Resonance in Medicine 81, no. 6 (2019): 3854–3864, https://doi.org/10.1002/mrm.27659.
G. Madelin, X‐Nuclei Magnetic Resonance Imaging (Jenny Stanford Publishing, 2022).
R. Kimmich, NMR: Tomography, Diffusometry, Relaxometry (Springer Science & Business Media, 2011).
G. G. Rodriguez, L. O'Donnell, Z. Yu, M. Cloos, and G. Madelin, Multinuclear Fingerprinting (MNF): High‐Resolution Simultaneous Proton/Sodium MR Fingerprinting (International Society for Magnetic Resonance in Medicine, 2024).
0 (Sodium Isotopes)
Weitere Informationen
We developed a new sodium magnetic resonance fingerprinting ( INLINEMATH MRF) method for the simultaneous mapping of INLINEMATH , INLINEMATH , INLINEMATH , and sodium density with built-in INLINEMATH (radiofrequency transmission inhomogeneities) and INLINEMATH (frequency offsets) parameters. We based our INLINEMATH MRF implementation on a 3D FLORET sequence with 23 radiofrequency pulses. To capture the complex spin INLINEMATH dynamics of the INLINEMATH nucleus, the fingerprint dictionary was simulated using the irreducible spherical tensor operators formalism. The dictionary contained 831,512 entries covering a wide range of INLINEMATH , INLINEMATH , INLINEMATH , INLINEMATH factor, and INLINEMATH parameters. Fingerprint matching was performed using the Pearson correlation and the resulting relaxation maps were weighted with a subset of the highest correlation coefficients corresponding to signal matches for each voxel. Our INLINEMATH MRF method was compared against reference methods in a seven-compartment phantom, and applied in brain in five healthy volunteers at 7 T. In phantoms, INLINEMATH MRF produced values comparable to those obtained with reference methods. Average sodium relaxation time values in cerebrospinal fluid, gray matter and white matter across five healthy volunteers were in good agreement with values previously reported in the literature.
(© 2025 John Wiley & Sons Ltd.)