Treffer: Finite element simulation of guidewire navigation in venous transcatheter procedures.

Title:
Finite element simulation of guidewire navigation in venous transcatheter procedures.
Authors:
Oussalah K; CNRS INSA-Lyon, LaMCoS, UMR5259, 69621, Villeurbanne, France. kenza.oussalah@insa-lyon.fr.; INSA Lyon, Universite Claude Bernard Lyon 1, Ecole Centrale de Lyon, CNRS, Ampère, UMR5005, 69621, Villeurbanne, France. kenza.oussalah@insa-lyon.fr., Moreau R; INSA Lyon, Universite Claude Bernard Lyon 1, Ecole Centrale de Lyon, CNRS, Ampère, UMR5005, 69621, Villeurbanne, France., Lelevé A; INSA Lyon, Universite Claude Bernard Lyon 1, Ecole Centrale de Lyon, CNRS, Ampère, UMR5005, 69621, Villeurbanne, France., Morestin F; CNRS INSA-Lyon, LaMCoS, UMR5259, 69621, Villeurbanne, France., Bou-Saïd B; CNRS INSA-Lyon, LaMCoS, UMR5259, 69621, Villeurbanne, France.
Source:
International journal of computer assisted radiology and surgery [Int J Comput Assist Radiol Surg] 2025 Dec; Vol. 20 (12), pp. 2491-2499. Date of Electronic Publication: 2025 Oct 06.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Springer Country of Publication: Germany NLM ID: 101499225 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1861-6429 (Electronic) Linking ISSN: 18616410 NLM ISO Abbreviation: Int J Comput Assist Radiol Surg Subsets: MEDLINE
Imprint Name(s):
Original Publication: Heidelberg : Springer
References:
Apostolidou E, Maslow AD, Poppas A (2017) Primary mitral valve regurgitation: update and review. Glob Cardiol Sci Pract. https://doi.org/10.21542/gcsp.2017.3. (PMID: 10.21542/gcsp.2017.3311396376516795)
Qiu J, Zhang L, Yang G, Chen Y, Zhou S (2019) An improved real-time endovascular guidewire position simulation using activity on edge network. IEEE Access 7:126618–126624. https://doi.org/10.1109/ACCESS.2019.2935327. (PMID: 10.1109/ACCESS.2019.2935327)
Alkhouli M, Rihal CS, Holmes DR (2016) Transseptal techniques for emerging structural heart interventions. JACC Cardiovasc Interv 9(24):2465–2480. https://doi.org/10.1016/j.jcin.2016.10.035. (PMID: 10.1016/j.jcin.2016.10.03528007198)
Cotin S (2008) Computer based interactive medical simulation. Thesis, Université des Sciences et Technologie de Lille - Lille I. https://theses.hal.science/tel-00839511.
El Sabbagh A, Reddy YNV, Nishimura RA (2018) Mitral valve regurgitation in the contemporary era: insights into diagnosis, management, and future directions. JACC Cardiovasc Imaging 11(4):628–643. https://doi.org/10.1016/j.jcmg.2018.01.009. (PMID: 10.1016/j.jcmg.2018.01.00929622181)
Razban M, Dargahi J, Boulet B (2018) A sensor-less catheter contact force estimation approach in endovascular intervention procedures. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2100–2106. https://doi.org/10.1109/IROS.2018.8593387.
Kunkler K (2006) The role of medical simulation: an overview. Int J Med Robot 2(3):203–210. https://doi.org/10.1002/rcs.101. (PMID: 10.1002/rcs.10117520633)
Luboz V, Zhai J, Odetoyinbo T, Littler P, Gould D, How T, Bello F (2011) Simulation of endovascular guidewire behaviour and experimental validation. Comput Methods Biomech Biomed Eng 14(6):515–520. https://doi.org/10.1080/10255842.2010.484003. (PMID: 10.1080/10255842.2010.484003)
Alderliesten T, Konings MK, Niessen WJ (2007) Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions. IEEE Trans Biomed Eng 54(1):29–38. https://doi.org/10.1109/TBME.2006.886659. (PMID: 10.1109/TBME.2006.88665917260853)
Schafer S, Singh V, Hoffmann K. R, Noël P. B, Xu J (2007) Planning image-guided endovascular interventions: guidewire simulation using shortest path algorithms. In: Medical imaging 2007: visualization and image-guided procedures, SPIE, pp 813–822. https://doi.org/10.1117/12.709519.
Li P, Feng J, Zhang X, Fang D, Zhang J, Liang C (2024) Modeling and experimental study of the intervention forces between the guidewire and blood vessels. Med Eng Phys 127:104166. https://doi.org/10.1016/j.medengphy.2024.104166. (PMID: 10.1016/j.medengphy.2024.10416638692765)
Shi P, Guo S, Jin X, Hirata H, Tamiya T, Kawanishi M (2023) A novel catheter interaction simulating method for virtual reality interventional training systems. Med Biol Eng Comput 61(3):685–697. https://doi.org/10.1007/s11517-022-02730-w. (PMID: 10.1007/s11517-022-02730-w36585560)
Takashima K, Shimomura R, Kitou T, Terada H, Yoshinaka K, Ikeuchi K (2007) Contact and friction between catheter and blood vessel. Tribol Int 40(2):319–328. https://doi.org/10.1016/j.triboint.2005.10.010. (PMID: 10.1016/j.triboint.2005.10.010)
Gindre J, Bel-Brunon A, Kaladji A, Duménil A, Rochette M, Lucas A, Haigron P, Combescure A (2017) Patient-specific finite-element simulation of the insertion of guidewire during an EVAR procedure: guidewire position prediction validation on 28 cases. IEEE Trans Biomed Eng 64(5):1057–1066. https://doi.org/10.1109/TBME.2016.2587362. (PMID: 10.1109/TBME.2016.258736227392338)
Mouktadiri G, Bou-Saïd B, Walter-Le-Berre H (2013) Aortic endovascular repair modeling using the finite element method. JBiSE 6(9):917–927. https://doi.org/10.4236/jbise.2013.69112. (PMID: 10.4236/jbise.2013.69112)
Nutu E, Vlasceanu D, Constantinescu D-M, Gruionu L, Pastrama S-D (2022) Finite element simulation of the catheter movement in transbronchial biopsy. Mater Today Proc 62:2587–2593. https://doi.org/10.1016/j.matpr.2022.04.045. (PMID: 10.1016/j.matpr.2022.04.045)
Vy P, Auffret V, Castro M, Badel P, Rochette M, Haigron P, Avril S (2018) Patient-specific simulation of guidewire deformation during transcatheter aortic valve implantation. Int J Numer Method Biomed Eng 34(6):e2974. https://doi.org/10.1002/cnm.2974. (PMID: 10.1002/cnm.297429486528)
Attinger EO (1969) Wall properties of veins. IEEE Trans Biomed Eng 16(4):253–261. https://doi.org/10.1109/tbme.1969.4502657. (PMID: 10.1109/tbme.1969.45026575354904)
Brass M, Kassab GS (2019) Iliac veins are more compressible than iliac arteries: a new method of testing. J Biomech Eng. https://doi.org/10.1115/1.4044227. (PMID: 10.1115/1.404422731300815)
Camasão DB, Mantovani D (2021) The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater Today Bio 10:100106. https://doi.org/10.1016/j.mtbio.2021.100106. (PMID: 10.1016/j.mtbio.2021.100106338898378050780)
Lebahn K, Keiler J, Schmidt W, Schubert J, Reumann M, Wree A, Grabow N, Kischkel S (2025) Mechanical characterization of the human femoral vein wall and its valves. J Mech Behav Biomed Mater 165:106938. https://doi.org/10.1016/j.jmbbm.2025.106938. (PMID: 10.1016/j.jmbbm.2025.10693839955830)
Wei P, Feng Z.-Q, Xie X.-L, Bian G.-B, Hou Z.-G (2014) FEM-based guide wire simulation and interaction for a minimally invasive vascular surgery training system. In: Proceeding of the 11th world congress on intelligent control and automation, pp 964–969. https://doi.org/10.1002/rcs.2444.
Higgs ZCJ, Macafee DaL, Braithwaite BD, Maxwell-Armstrong CA (2005) The seldinger technique: 50 years on. Lancet 366(9494):1407–1409. https://doi.org/10.1016/S0140-6736(05)66878-X. (PMID: 10.1016/S0140-6736(05)66878-X16226619)
Craiem D, Rojo F, Atienza J, Guinea G, Armentano RL (2008) Fractional calculus applied to model arterial viscoelasticity. Lat Am Appl Res 38(no 2):141–145.
Sánchez-Molina D, García-Vilana S, Llumà J, Galtés I, Velázquez-Ameijide J, Rebollo-Soria MC, Arregui-Dalmases C (2021) Mechanical behavior of blood vessels: elastic and viscoelastic contributions. Biology 10(9):9. https://doi.org/10.3390/biology10090831. (PMID: 10.3390/biology10090831)
Wang W, Wan Z, Wu B, Lu L, Tang Y (2019) Finite element analysis for mechanics of guiding catheters in transfemoral intervention. J Card Surg 34(8):690–699. https://doi.org/10.1111/jocs.14132. (PMID: 10.1111/jocs.1413231233248)
Yin X, Guo S, Wang Y (2015) Force model-based haptic master console design for teleoperated minimally invasive surgery application. In: IEEE international conference on mechatronics and automation (ICMA), pp 749–754. https://doi.org/10.1109/ICMA.2015.7237579.
Baki P, Székely G, Kósa G (2012) Miniature tri-axial force sensor for feedback in minimally invasive surgery. In: 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 805–810. https://doi.org/10.1109/BioRob.2012.6290770.
Grant Information:
ANR-21-RHUS-0006 Agence Nationale de la Recherche
Contributed Indexing:
Keywords: Finite element method (FEM); Medical imaging; Medical simulation; Mini invasive surgery (MIS); Transfemoral access
Entry Date(s):
Date Created: 20251006 Date Completed: 20251209 Latest Revision: 20251209
Update Code:
20251209
DOI:
10.1007/s11548-025-03522-x
PMID:
41051627
Database:
MEDLINE

Weitere Informationen

Purpose: This paper introduces a Finite Element Method (FEM) to model the navigation of a surgical guidewire using a Transcatheter (TC) approach in the venous tree. The core objective is to characterize guidewire/vessel walls interactions, to predict reaction forces of the guidewire at the level of operator's grip zones and to correlate them with the model's kinematics.
Methods: The analysis are performed following a dynamic implicit FEM simulation using Abaqus® (SIMULIA™). The venous geometry, from the femoral vein to the right atrium entry, is reconstructed from segmented preoperative CT-Scan data. A commercial super-stiff guidewire is modeled using beam elements with realistic incremental stiffness. To simulate real-life surgical insertion, a velocity-driven boundary condition is applied onto the distal end of the guidewire. Biomimetic material and interaction properties, along with external environmental influences and loads, enable high-fidelity computation.
Results: Deformations remain minimal for venous walls tree while displacement of the guidewire are large. The maximum predicted reaction forces range from 0.5 to 1.4 N, depending on the geometric and kinematic insertion conditions of the guidewire. This magnitude is consistent with values reported in the literature for Minimally Invasive Surgeries. Results validate the applicability of the dynamic implicit FEM in predicting guidewire trajectory, interaction forces and reaction forces relevant to haptic feedback generation.
Conclusion: This work lays the foundation for an image-based, mimetic FEM adapted for guidewire navigation's simulation. The proposed model offers an enhanced understanding of the mechanical behaviour underlying endovascular navigation.
(© 2025. CARS.)

Declarations. Conflict of interest: All authors declare no conflicts of interest.