Treffer: Digital Outcome Measures for Gait and Spontaneous Locomotor Activity in Dystrophic Dogs.

Title:
Digital Outcome Measures for Gait and Spontaneous Locomotor Activity in Dystrophic Dogs.
Authors:
Kuraoka M; Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan. mkuraoka@nvlu.ac.jp.; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan. mkuraoka@nvlu.ac.jp., Watanabe K; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.; Graduate School of Applied Biochemistry, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan., Kawashima T; Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan., Nitahara-Kasahara Y; Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo, Japan., Tachimori H; Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.; Department of Health Policy and Management, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan., Takeda S; National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan., Minegishi K; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan., Aoki Y; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan. tsugu56@ncnp.go.jp.
Source:
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2026; Vol. 2963, pp. 213-223.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
Imprint Name(s):
Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
References:
Sussman M (2002) Duchenne muscular dystrophy. J Am Acad Orthop Surg 10(2):138–151. (PMID: 10.5435/00124635-200203000-0000911929208)
Matsumura K, Campbell KP (1994) Dystrophin-glycoprotein complex: its role in the molecular pathogenesis of muscular dystrophies. Muscle Nerve 17(1):2–15. https://doi.org/10.1002/mus.880170103. (PMID: 10.1002/mus.8801701038264699)
Goto M et al (2016) Long-term outcomes of steroid therapy for Duchenne muscular dystrophy in Japan. Brain Dev 38(9):785–791. https://doi.org/10.1016/j.braindev.2016.04.001. (PMID: 10.1016/j.braindev.2016.04.00127112384)
Manzur AY, Kuntzer T, Pike M, Swan A (2008) Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev 1:CD003725. https://doi.org/10.1002/14651858.CD003725.pub3. (PMID: 10.1002/14651858.CD003725.pub3)
Guiraud S et al (2015) The pathogenesis and therapy of muscular dystrophies. Annu Rev Genomics Hum Genet 16:281–308. https://doi.org/10.1146/annurev-genom-090314-025003. (PMID: 10.1146/annurev-genom-090314-02500326048046)
Shieh PB (2015) Duchenne muscular dystrophy: clinical trials and emerging tribulations. Curr Opin Neurol 28(5):542–546. https://doi.org/10.1097/WCO.0000000000000243. (PMID: 10.1097/WCO.000000000000024326280938)
Dang UJ et al (2024) Efficacy and safety of Vamorolone over 48 weeks in boys with Duchenne muscular dystrophy: a randomized controlled trial. Neurology 102(5):e208112. https://doi.org/10.1212/WNL.0000000000208112. (PMID: 10.1212/WNL.00000000002081123833549911067696)
Mercuri E et al (2024) Safety and efficacy of givinostat in boys with Duchenne muscular dystrophy (EPIDYS): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 23(4):393–403. https://doi.org/10.1016/S1474-4422(24)00036-X. (PMID: 10.1016/S1474-4422(24)00036-X38508835)
Mendell JR et al (2025) AAV gene therapy for Duchenne muscular dystrophy: the EMBARK phase 3 randomized trial. Nat Med 31(1):332–341. https://doi.org/10.1038/s41591-024-03304-z. (PMID: 10.1038/s41591-024-03304-z39385046)
Henzi BC et al (2024) Tamoxifen may contribute to preserve cardiac function in Duchenne muscular dystrophy. Eur J Pediatr 183(9):4057–4062. https://doi.org/10.1007/s00431-024-05670-9. (PMID: 10.1007/s00431-024-05670-93896090711322393)
Lee J et al (2025) Safety and tolerability of Wharton's jelly-derived mesenchymal stem cells for patients with Duchenne muscular dystrophy: a phase 1 clinical study. J Clin Neurol 21(1):40–52. https://doi.org/10.3988/jcn.2024.0299. (PMID: 10.3988/jcn.2024.02993977856611711273)
Komaki H et al (2025) Phase 1/2 trial of brogidirsen: dual-targeting antisense oligonucleotides for exon 44 skipping in Duchenne muscular dystrophy. Cell Rep Med 6(1):101901. https://doi.org/10.1016/j.xcrm.2024.101901. (PMID: 10.1016/j.xcrm.2024.1019013979357311866436)
McDonald CM et al (2013) The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve 48(3):343–356. https://doi.org/10.1002/mus.23902. (PMID: 10.1002/mus.23902236819303824082)
McDonald CM et al (2013) The 6-minute walk test and other clinical endpoints in duchenne muscular dystrophy: reliability, concurrent validity, and minimal clinically important differences from a multicenter study. Muscle Nerve 48(3):357–368. https://doi.org/10.1002/mus.23905. (PMID: 10.1002/mus.23905236742893826053)
Beenakker EA et al (2005) Functional ability and muscle force in healthy children and ambulant Duchenne muscular dystrophy patients. Eur J Paediatr Neurol 9(6):387–393. https://doi.org/10.1016/j.ejpn.2005.06.004. (PMID: 10.1016/j.ejpn.2005.06.00416102988)
Mazzone ES et al (2009) Reliability of the north star ambulatory assessment in a multicentric setting. Neuromuscul Disord 19(7):458–461. https://doi.org/10.1016/j.nmd.2009.06.368. (PMID: 10.1016/j.nmd.2009.06.36819553120)
Schreiber A et al (2018) Corticosteroids in Duchenne muscular dystrophy: impact on the motor function measure sensitivity to change and implications for clinical trials. Dev Med Child Neurol 60(2):185–191. https://doi.org/10.1111/dmcn.13590. (PMID: 10.1111/dmcn.1359028990163)
Pane M et al (2014) Reliability of the performance of upper limb assessment in Duchenne muscular dystrophy. Neuromuscul Disord 24(3):201–206. https://doi.org/10.1016/j.nmd.2013.11.014. (PMID: 10.1016/j.nmd.2013.11.01424440357)
Lu QL, Cirak S, Partridge T (2014) What can we learn from clinical trials of exon skipping for DMD? Mol Ther Nucleic Acids 3:e152. https://doi.org/10.1038/mtna.2014.6. (PMID: 10.1038/mtna.2014.6246188514027981)
Gonzalez Barral C, Servais L (2024) Digital outcome measures in Duchene muscular dystrophy: lessons learnt from clinical trials. J Neuromuscul Dis:22143602241296280. https://doi.org/10.1177/22143602241296280.
Ferrer-Mallol E et al (2022) Patient-led development of digital endpoints and the use of computer vision analysis in assessment of motor function in rare diseases. Front Pharmacol 13:916714. https://doi.org/10.3389/fphar.2022.916714. (PMID: 10.3389/fphar.2022.916714361721969510779)
Rabbia M et al (2024) Stride velocity 95th centile detects decline in ambulatory function over shorter intervals than the 6-minute walk test or north star ambulatory assessment in Duchenne muscular dystrophy. J Neuromuscul Dis 11(3):701–714. https://doi.org/10.3233/JND-230188. (PMID: 10.3233/JND-2301883864016511091611)
Servais L et al (2023) First regulatory qualification of a digital primary endpoint to measure treatment efficacy in DMD. Nat Med 29(10):2391–2392. https://doi.org/10.1038/s41591-023-02459-5. (PMID: 10.1038/s41591-023-02459-537814063)
Neugebauer JM, Hawkins DA, Beckett L (2012) Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor. PLoS One 7(10):e48182. https://doi.org/10.1371/journal.pone.0048182. (PMID: 10.1371/journal.pone.0048182231335643485031)
Rowlands AV et al (2015) Comparability of measured acceleration from accelerometry-based activity monitors. Med Sci Sports Exerc 47(1):201–210. https://doi.org/10.1249/MSS.0000000000000394. (PMID: 10.1249/MSS.000000000000039424870577)
Salarian A et al (2007) Ambulatory monitoring of physical activities in patients with Parkinson's disease. IEEE Trans Biomed Eng 54(12):2296–2299. (PMID: 10.1109/TBME.2007.89659118075046)
Ganea R et al (2012) Gait assessment in children with duchenne muscular dystrophy during long-distance walking. J Child Neurol 27(1):30–38. https://doi.org/10.1177/0883073811413581. (PMID: 10.1177/088307381141358121765150)
Davidson ZE et al (2015) Strong correlation between the 6-minute walk test and accelerometry functional outcomes in boys with Duchenne muscular dystrophy. J Child Neurol 30(3):357–363. https://doi.org/10.1177/0883073814530502. (PMID: 10.1177/088307381453050224762862)
Le Moing AG et al (2016) A movement monitor based on magneto-inertial sensors for non-ambulant patients with Duchenne muscular dystrophy: a pilot study in controlled environment. PLoS One 11(6):e0156696. https://doi.org/10.1371/journal.pone.0156696. (PMID: 10.1371/journal.pone.0156696272711574896626)
Kimura S et al (2014) Estimation of muscle strength from actigraph data in Duchenne muscular dystrophy. Pediatr Int 56(5):748–752. https://doi.org/10.1111/ped.12348. (PMID: 10.1111/ped.1234824689787)
Ramli AA et al (2024) Gait characterization in Duchenne muscular dystrophy (DMD) using a single-sensor accelerometer: classical machine learning and deep learning approaches. Sensors (Basel) 24(4). https://doi.org/10.3390/s24041123.
Jeannet PY et al (2011) Continuous monitoring and quantification of multiple parameters of daily physical activity in ambulatory Duchenne muscular dystrophy patients. Eur J Paediatr Neurol 15(1):40–47. https://doi.org/10.1016/j.ejpn.2010.07.002. (PMID: 10.1016/j.ejpn.2010.07.00220719551)
Nishizawa H, Shiba N, Nakamura A (2016) Usefulness of continuous actigraph monitoring in the assessment of the effect of corticosteroid treatment for Duchenne muscular dystrophy: a case report. J Phys Ther Sci 28(11):3249–3251. https://doi.org/10.1589/jpts.28.3249. (PMID: 10.1589/jpts.28.3249279421595140839)
Killian M et al (2020) Beyond ambulation: measuring physical activity in youth with Duchenne muscular dystrophy. Neuromuscul Disord 30(4):277–282. https://doi.org/10.1016/j.nmd.2020.02.007. (PMID: 10.1016/j.nmd.2020.02.007322911497234926)
Kornegay JN et al (2012) Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm Genome 23(1–2):85–108. https://doi.org/10.1007/s00335-011-9382-y. (PMID: 10.1007/s00335-011-9382-y222186993911884)
Kornegay JN (2017) The golden retriever model of Duchenne muscular dystrophy. Skelet Muscle 7(1):9. https://doi.org/10.1186/s13395-017-0124-z. (PMID: 10.1186/s13395-017-0124-z285260705438519)
Shimatsu Y et al (2003) Canine X-linked muscular dystrophy in Japan (CXMDJ). Exp Anim 52(2):93–97. (PMID: 10.1538/expanim.52.9312806883)
Kuraoka M, Aoki Y, Takeda S (2021) Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 70(4):419–430. https://doi.org/10.1538/expanim.21-0072. (PMID: 10.1538/expanim.21-0072341352668614006)
Valentine BA, Cooper BJ, Cummings JF, deLahunta A (1986) Progressive muscular dystrophy in a golden retriever dog: light microscope and ultrastructural features at 4 and 8 months. Acta Neuropathol 71(3–4):301–310. https://doi.org/10.1007/BF00688053. (PMID: 10.1007/BF006880533799143)
Valentine BA et al (1988) Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies. J Neurol Sci 88(1–3):69–81. https://doi.org/10.1016/0022-510x(88)90206-7. (PMID: 10.1016/0022-510x(88)90206-73225630)
Shimatsu Y et al (2005) Major clinical and histopathological characteristics of canine X-linked muscular dystrophy in Japan. CXMDJ Acta Myol 24(2):145–154. (PMID: 16550932)
Kornegay JN et al (2003) The cranial sartorius muscle undergoes true hypertrophy in dogs with golden retriever muscular dystrophy. Neuromuscul Disord 13(6):493–500. https://doi.org/10.1016/s0960-8966(03)00025-7. (PMID: 10.1016/s0960-8966(03)00025-712899877)
Marsh AP et al (2010) Kinematics of gait in golden retriever muscular dystrophy. Neuromuscul Disord 20(1):16–20. https://doi.org/10.1016/j.nmd.2009.10.007. (PMID: 10.1016/j.nmd.2009.10.00719932618)
Shin JH et al (2013) Quantitative phenotyping of Duchenne muscular dystrophy dogs by comprehensive gait analysis and overnight activity monitoring. PLoS One 8(3):e59875. https://doi.org/10.1371/journal.pone.0059875. (PMID: 10.1371/journal.pone.0059875235441073609742)
Barthelemy I et al (2009) Gait analysis using accelerometry in dystrophin-deficient dogs. Neuromuscul Disord 19(11):788–796. https://doi.org/10.1016/j.nmd.2009.07.014. (PMID: 10.1016/j.nmd.2009.07.01419800232)
Barthelemy I et al (2011) Longitudinal ambulatory measurements of gait abnormality in dystrophin-deficient dogs. BMC Musculoskelet Disord 12:75. https://doi.org/10.1186/1471-2474-12-75. (PMID: 10.1186/1471-2474-12-75214892953103492)
Barthelemy I et al (2014) Predictive markers of clinical outcome in the GRMD dog model of Duchenne muscular dystrophy. Dis Model Mech 7(11):1253–1261. https://doi.org/10.1242/dmm.016014. (PMID: 10.1242/dmm.016014252615684213729)
Fraysse B et al (2017) Gait characterization in golden retriever muscular dystrophy dogs using linear discriminant analysis. BMC Musculoskelet Disord 18(1):153. https://doi.org/10.1186/s12891-017-1494-4. (PMID: 10.1186/s12891-017-1494-4284038545388997)
Kuraoka M et al (2018) Accelerometric outcomes of motor function related to clinical evaluations and muscle involvement in dystrophic dogs. PLoS One 13(12):e0208415. https://doi.org/10.1371/journal.pone.0208415. (PMID: 10.1371/journal.pone.0208415305330176289438)
Hayashita-Kinoh H et al (2015) Intra-amniotic rAAV-mediated microdystrophin gene transfer improves canine X-linked muscular dystrophy and may induce immune tolerance. Mol Ther 23(4):627–637. https://doi.org/10.1038/mt.2015.5. (PMID: 10.1038/mt.2015.5255866884395797)
Echigoya Y et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci USA 114(16):4213–4218. https://doi.org/10.1073/pnas.1613203114. (PMID: 10.1073/pnas.1613203114283735705402437)
Yokota T et al (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65(6):667–676. https://doi.org/10.1002/ana.21627. (PMID: 10.1002/ana.21627192884675951302)
Galan-Mercant A, Baron-Lopez FJ, Labajos-Manzanares MT, Cuesta-Vargas AI (2014) Reliability and criterion-related validity with a smartphone used in timed-up-and-go test. Biomed Eng Online 13:156. https://doi.org/10.1186/1475-925X-13-156. (PMID: 10.1186/1475-925X-13-156254405334265430)
Contributed Indexing:
Keywords: Accelerometry; Canine X-linked muscular dystrophy; Digital outcome measure; Duchenne muscular dystrophy; Gait; Infrared sensor; Motor function; Spontaneous locomotor activity
Entry Date(s):
Date Created: 20251001 Date Completed: 20251001 Latest Revision: 20251001
Update Code:
20251001
DOI:
10.1007/978-1-0716-4738-7_16
PMID:
41028688
Database:
MEDLINE

Weitere Informationen

Digital outcome measures utilizing digital devices and instruments are highly effective in capturing significant changes quantitatively in clinical trials of patients with Duchenne muscular dystrophy. A dystrophic model of beagle dogs, known as canine X-linked muscular dystrophy in Japan (CXMD <subscript>J</subscript> ), shows the symptoms of muscle weakness and has been evaluated for motor function using these digital outcome measures to assess therapeutic efficacy and monitor disease progression circumstantially. Here, we present accelerometry methods for analyzing gait function and infrared monitoring analysis for assessing spontaneous locomotor activity in CXMD <subscript>J</subscript> dystrophic dogs. The multiple parameters derived from these methods can provide valuable phenotypic information in medium-to-large-sized experimental animals.
(© 2026. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)