Treffer: ggalign: Bridging the Grammar of Graphics and Biological Multilayered Complexity.
Nat Commun. 2021 Mar 3;12(1):1419. (PMID: 33658503)
Cell. 2024 Apr 25;187(9):2324-2335.e19. (PMID: 38599211)
Imeta. 2022 Aug 01;1(3):e43. (PMID: 38868715)
Nature. 2021 Feb;590(7846):486-491. (PMID: 33505028)
Cell. 2020 Feb 20;180(4):729-748.e26. (PMID: 32059776)
Immunity. 2018 Apr 17;48(4):812-830.e14. (PMID: 29628290)
Nat Biotechnol. 2018 Jun;36(5):421-427. (PMID: 29608177)
Adv Sci (Weinh). 2025 Nov;12(44):e07799. (PMID: 40948029)
Nat Commun. 2022 Nov 4;13(1):6619. (PMID: 36333338)
Biomark Res. 2022 May 31;10(1):37. (PMID: 35642013)
Mol Biol Evol. 2021 Aug 23;38(9):4039-4042. (PMID: 34097064)
Cancer Cell. 2018 Apr 9;33(4):676-689.e3. (PMID: 29622463)
Nat Genet. 2018 Aug;50(8):1189-1195. (PMID: 30013179)
Cell Host Microbe. 2021 Feb 10;29(2):281-298.e5. (PMID: 33382980)
Exp Mol Med. 2022 Oct;54(10):1658-1669. (PMID: 36207426)
Cancers (Basel). 2023 Jan 04;15(2):. (PMID: 36672292)
Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5. (PMID: 23193258)
Genome Biol. 2025 Jan 6;26(1):5. (PMID: 39762969)
Commun Biol. 2023 Nov 16;6(1):1138. (PMID: 37973839)
Cell. 2018 Apr 5;173(2):283-285. (PMID: 29625045)
Innovation (Camb). 2025 May 22;6(9):100958. (PMID: 40979292)
Signal Transduct Target Ther. 2023 Mar 1;8(1):92. (PMID: 36859359)
Weitere Informationen
Data visualization is essential for exploring and communicating complex biological datasets. As omics data grow in scale and complexity, there is an increasing demand for visualization tools that are both flexible and extensible. We present ggalign, an R package that extends the ggplot2 ecosystem by introducing an integrative framework for composable visualization. Designed to overcome limitations of existing tools, ggalign supports modular, data-aware layouts-including circular, stacked, and quadrant-based configurations-and enables the representation of diverse data relationships, such as one-to-many and many-to-one connections. Its ability to reorder and group observations using data-driven or domain-specific criteria enhances the interpretability of high-dimensional datasets. Moreover, ggalign introduces a novel linking mechanism for visualizing interconnections across heterogeneous data types, as demonstrated in genomic and microbiome case studies. Together, these features position ggalign as a versatile and reproducible solution for multi-omics research, supporting both exploratory data analysis and publication-ready presentation.
(© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.)