Treffer: Uncertainty Visualization for Biomolecular Structures: An Empirical Evaluation.

Title:
Uncertainty Visualization for Biomolecular Structures: An Empirical Evaluation.
Source:
IEEE transactions on visualization and computer graphics [IEEE Trans Vis Comput Graph] 2025 Dec; Vol. 31 (12), pp. 10296-10310.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: IEEE Computer Society Country of Publication: United States NLM ID: 9891704 Publication Model: Print Cited Medium: Internet ISSN: 1941-0506 (Electronic) Linking ISSN: 10772626 NLM ISO Abbreviation: IEEE Trans Vis Comput Graph Subsets: MEDLINE
Imprint Name(s):
Original Publication: New York, NY : IEEE Computer Society, c1995-
Entry Date(s):
Date Created: 20250806 Date Completed: 20251106 Latest Revision: 20251107
Update Code:
20251107
DOI:
10.1109/TVCG.2025.3596385
PMID:
40768449
Database:
MEDLINE

Weitere Informationen

Uncertainty is an intrinsic property of almost all data, regardless of the data being measured, simulated, or generated. It can significantly influence the results and reliability of subsequent analysis steps. Clearly communicating uncertainties is crucial for informed decision-making and understanding, especially in biomolecular data, where uncertainty is often difficult to infer. Uncertainty visualization (UV) is a powerful tool for this purpose. However, previously proposed uncertainty visualization (UV) methods lack sufficient empirical evaluation. We collected and categorized visualization methods for portraying positional uncertainty in biomolecular structures. We then organized the methods into metaphorical groups and extracted nine representatives: color, clouds, ensemble, hulls, sausages, contours, texture, waves, and noise. We assessed their strengths and weaknesses in a twofold approach: expert assessments with six domain experts and three perceptual evaluations involving 1,756 participants. Through the expert assessments, we aimed to highlight the advantages and limitations of the individual methods for the application domain and discussed areas for necessary improvements. Through the perceptual evaluation, we investigated whether the visualizations are intuitively associated with uncertainty and whether the directionality of the mapping is perceived as intended. We also assessed the accuracy of inferring uncertainty values from the visualizations. Based on our results, we judged the appropriateness of the metaphors for encoding uncertainty and suggest further areas for improvement.