Treffer: Phylo-rs: an extensible phylogenetic analysis library in rust.
BMC Bioinformatics. 2013 Jan 16;14:3. (PMID: 23323711)
BMC Bioinformatics. 2017 Feb 2;18(1):85. (PMID: 28153045)
Bioinformatics. 2019 Feb 1;35(3):526-528. (PMID: 30016406)
Cold Spring Harb Perspect Med. 2021 Mar 1;11(3):. (PMID: 31988203)
Bioinformatics. 2024 Feb 1;40(2):. (PMID: 38243701)
Bioinformatics. 2019 Nov 1;35(21):4453-4455. (PMID: 31070718)
Nat Commun. 2024 Sep 3;15(1):7672. (PMID: 39237497)
Bioinformatics. 2021 Aug 9;37(15):2209-2211. (PMID: 33165528)
PLoS One. 2023 Jun 23;18(6):e0287350. (PMID: 37352194)
GigaByte. 2025 Mar 07;2025:gigabyte152. (PMID: 40110034)
Bioinformatics. 2020 Dec 30;36(Suppl_2):i884-i894. (PMID: 33381826)
mSphere. 2022 Jun 29;7(3):e0099421. (PMID: 35766502)
Small. 2020 Aug;16(32):e2002169. (PMID: 32578378)
Bioinformatics. 2010 Jun 15;26(12):1569-71. (PMID: 20421198)
SoftwareX. 2020 Jan-Jun;11:. (PMID: 35903557)
J Comput Biol. 2020 Sep;27(9):1422-1432. (PMID: 32048865)
PeerJ. 2024 Jan 5;12:e16505. (PMID: 38192598)
Methods Mol Biol. 2021;2242:15-42. (PMID: 33961215)
Virus Evol. 2018 Jun 08;4(1):vey016. (PMID: 29942656)
Nature. 2020 Dec;588(7836):185-186. (PMID: 33262490)
Microbiol Resour Announc. 2019 Aug 8;8(32):. (PMID: 31395641)
Syst Biol. 2023 Nov 1;72(5):1052-1063. (PMID: 37208300)
PLoS Comput Biol. 2018 Nov 1;14(11):e1006581. (PMID: 30383757)
Nat Biotechnol. 2021 Nov;39(11):1348-1365. (PMID: 34750572)
Science. 2025 Apr 25;388(6745):eadq0900. (PMID: 40273240)
Mol Biol Evol. 2020 May 1;37(5):1530-1534. (PMID: 32011700)
J Natl Cancer Cent. 2024 Mar 21;4(2):97-106. (PMID: 39282584)
NAR Genom Bioinform. 2021 Aug 11;3(3):lqab075. (PMID: 34396097)
Virus Evol. 2022 Jun 02;8(1):veac045. (PMID: 35775026)
J Math Biol. 2021 Jan 25;82(1-2):8. (PMID: 33492606)
Weitere Informationen
Background: The advent of next-generation and long-read sequencing technologies has provided an ever-increasing wealth of phylogenetic data that require specially designed algorithms to decipher the underlying evolutionary relationships. As large-scale data become increasingly accessible, there is a concomitant need for efficient computational libraries that facilitate the development and dissemination of specialized algorithms for phylogenetic comparative biology.
Results: We introduce Phylo-rs: a fast, extensible, general-purpose library for phylogenetic analysis and inference written in the Rust programming language. Phylo-rs leverages a combination of speed, memory-safety, and native WebAssembly support offered by Rust to provide a robust set of memory-efficient data structures and elementary phylogenetic algorithms. Phylo-rs focuses on the efficient and convenient deployment of software aimed at large-scale phylogenetic analysis and inference. Scalability analysis against popular libraries shows that Phylo-rs performs comparably or better on key algorithms. We utilized it to assess the phylogenetic diversity of influenza A virus in swine, identifying virus groups that are undergoing evolutionary expansion that could be targeted for control through multivalent vaccines. Additionally, we used Phylo-rs to enhance phylogenetic inference by visualizing tree space from Markov chain Monte Carlo (MCMC) Bayesian analysis, efficiently computing approximately five billion tree pair distances to evaluate convergence and select MCMC runs for genomic epidemiology.
Conclusion: Phylo-rs enables the design and implementation of cutting-edge software for phylogenetic analysis, thereby facilitating the application and dissemination of theoretical advancements in biology. Phylo-rs is available under an open-source license on GitHub at https://github.com/sriram98v/phylo-rs , with documentation available at https://docs.rs/phylo/latest/phylo/ .
(© 2025. The Author(s).)
Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.