Treffer: Generative prediction of real-world prevalent SARS-CoV-2 mutation with in silico virus evolution.
Original Publication: London ; Birmingham, AL : H. Stewart Publications, [2000-
Nature. 2022 Feb;602(7898):664-670. (PMID: 35016195)
Cell. 2022 Oct 13;185(21):4008-4022.e14. (PMID: 36150393)
Nature. 2024 Jan;625(7993):148-156. (PMID: 37993710)
Amino Acids. 2011 Nov;41(5):1147-57. (PMID: 19826903)
Nature. 2022 Apr;604(7906):546-552. (PMID: 35228716)
J Chem Inf Model. 2021 Sep 27;61(9):4687-4700. (PMID: 34468141)
Nat Commun. 2023 Jun 13;14(1):3478. (PMID: 37311849)
Nature. 2020 Mar;579(7798):270-273. (PMID: 32015507)
Nat Microbiol. 2023 Nov;8(11):1952-1959. (PMID: 37845314)
Bioinform Adv. 2023 Jan 02;3(1):vbac103. (PMID: 36698760)
Viruses. 2022 Mar 19;14(3):. (PMID: 35337047)
Nature. 2022 Feb;602(7897):487-495. (PMID: 34942634)
Science. 2023 Mar 17;379(6637):1123-1130. (PMID: 36927031)
Science. 2021 Jan 15;371(6526):284-288. (PMID: 33446556)
Science. 2020 Aug 14;369(6505):846-849. (PMID: 32576668)
Nature. 2023 Feb;614(7948):521-529. (PMID: 36535326)
Elife. 2019 Apr 30;8:. (PMID: 31038123)
Nat Med. 2022 Jul;28(7):1501-1508. (PMID: 35725921)
Science. 2020 May 8;368(6491):. (PMID: 32234805)
Cell. 2022 Feb 3;185(3):467-484.e15. (PMID: 35081335)
Nature. 2022 Mar;603(7902):706-714. (PMID: 35104837)
Nat Rev Microbiol. 2008 Jun;6(6):477-87. (PMID: 18533288)
Cell Syst. 2022 Apr 20;13(4):274-285.e6. (PMID: 35120643)
PLoS Pathog. 2022 Nov 18;18(11):e1010951. (PMID: 36399443)
Nature. 2023 Oct;622(7984):818-825. (PMID: 37821700)
Lancet. 2020 Nov 21;396(10263):1614-1616. (PMID: 33159850)
Trends Biotechnol. 2011 Sep;29(9):435-42. (PMID: 21561674)
Elife. 2023 Feb 21;12:. (PMID: 36803543)
Proc Natl Acad Sci U S A. 2021 Oct 19;118(42):. (PMID: 34588290)
Nature. 2021 Sep;597(7874):97-102. (PMID: 34261126)
Nat Biotechnol. 2022 Nov;40(11):1617-1623. (PMID: 36192636)
Trends Immunol. 2020 Dec;41(12):1100-1115. (PMID: 33132005)
Elife. 2018 Mar 28;7:. (PMID: 29590010)
J Virol. 2019 Nov 13;93(23):. (PMID: 31511387)
Lancet Infect Dis. 2022 Oct;22(10):1422-1423. (PMID: 36084664)
Immunogenetics. 2002 Nov;54(8):527-42. (PMID: 12439615)
Cell Rep. 2023 Oct 31;42(10):113356. (PMID: 37851571)
N Engl J Med. 2023 Jan 5;388(1):89-91. (PMID: 36476720)
J Mol Biol. 2020 Sep 4;432(19):5212-5226. (PMID: 32710986)
JAMA. 2020 Nov 24;324(20):2095-2096. (PMID: 33074293)
Viruses. 2016 Jun 03;8(6):. (PMID: 27271655)
Nat Rev Microbiol. 2023 Mar;21(3):178-194. (PMID: 36631691)
Cell. 2020 Sep 3;182(5):1295-1310.e20. (PMID: 32841599)
Genome Res. 2004 Jun;14(6):1188-90. (PMID: 15173120)
Sci Rep. 2014 May 13;4:4942. (PMID: 24820965)
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):7112-7127. (PMID: 34232869)
Nat Rev Microbiol. 2021 Mar;19(3):141-154. (PMID: 33024307)
Annu Rev Virol. 2015 Nov;2(1):161-79. (PMID: 26958911)
J Virol. 2002 Aug;76(15):7460-7. (PMID: 12097558)
Nucleic Acids Res. 1990 Oct 25;18(20):6097-100. (PMID: 2172928)
Comput Biol Med. 2022 Dec;151(Pt A):106212. (PMID: 36327885)
Nat Rev Microbiol. 2023 Jun;21(6):361-379. (PMID: 37020110)
Nat Med. 2023 Aug;29(8):2007-2018. (PMID: 37524952)
Cell. 2020 Aug 20;182(4):794-795. (PMID: 32697970)
Science. 2022 Jun 17;376(6599):1327-1332. (PMID: 35608456)
Lancet. 2021 Dec 11;398(10317):2126-2128. (PMID: 34871545)
Signal Transduct Target Ther. 2022 Jan 5;7(1):8. (PMID: 34987150)
Nat Commun. 2021 Jul 7;12(1):4196. (PMID: 34234131)
Signal Transduct Target Ther. 2022 Apr 28;7(1):141. (PMID: 35484110)
Nat Genet. 2023 Sep;55(9):1512-1522. (PMID: 37563329)
BMC Genomics. 2022 Feb 11;23(1):121. (PMID: 35148677)
Weitere Informationen
Predicting the mutation prevalence trends of emerging viruses in the real world is an efficient means to update vaccines or drugs in advance. It is crucial to develop a computational method for the prediction of real-world prevalent SARS-CoV-2 mutations considering the impact of multiple selective pressures within and between hosts. Here, a deep-learning generative framework for real-world prevalent SARS-CoV-2 mutation prediction, named ViralForesight, is developed on top of protein language models and in silico virus evolution. Through the paradigm of host-to-herd in silico virus evolution, ViralForesight reproduced previous real-world prevalent SARS-CoV-2 mutations for multiple lineages with superior performance. More importantly, ViralForesight correctly predicted the future prevalent mutations that dominated the COVID-19 pandemic in the real world more than half a year in advance with in vitro experimental validation. Overall, ViralForesight demonstrates a proactive approach to the prevention of emerging viral infections, accelerating the process of discovering future prevalent mutations with the power of generative deep learning.
(© The Author(s) 2025. Published by Oxford University Press.)