Treffer: Phenotype structuring in collective cell migration: a tutorial of mathematical models and methods.
Original Publication: Wien, New York, Springer-Verlag.
Nonlinearity. 2010;23(1):R1-R9. (PMID: 20808719)
J Math Biol. 2020 Feb;80(3):775-807. (PMID: 31641842)
Science. 1960 Nov 4;132(3436):1291-5. (PMID: 13782058)
Science. 2002 Aug 16;297(5584):1183-6. (PMID: 12183631)
J Theor Biol. 1973 Aug 15;40(2):389-92. (PMID: 4747249)
Nat Commun. 2018 Jun 5;9(1):2177. (PMID: 29872053)
J Cell Sci. 2020 Jun 11;133(11):. (PMID: 32527967)
Nat Rev Cancer. 2021 Sep;21(9):592-604. (PMID: 34239104)
J Theor Biol. 2018 Jan 7;436:120-134. (PMID: 29030212)
JCO Clin Cancer Inform. 2019 Feb;3:1-13. (PMID: 30715927)
J R Soc Interface. 2011 Mar 6;8(56):345-68. (PMID: 20656740)
Philos Trans A Math Phys Eng Sci. 2015 Sep 13;373(2050):. (PMID: 26261370)
Bull Math Biol. 2018 Apr;80(4):701-737. (PMID: 29500719)
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2309251121. (PMID: 38194458)
PLoS Comput Biol. 2012;8(6):e1002556. (PMID: 22719241)
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2117377119. (PMID: 35727978)
J Math Biol. 2015 Sep;71(3):551-82. (PMID: 25212910)
J Math Biol. 2021 Jul 6;83(2):14. (PMID: 34228185)
J R Soc Interface. 2024 Mar;21(212):20230607. (PMID: 38442862)
Nat Commun. 2019 Apr 23;10(1):1877. (PMID: 31015402)
Philos Trans R Soc Lond B Biol Sci. 2020 Sep 14;375(1807):20190391. (PMID: 32713308)
J Math Biol. 2002 Oct;45(4):294-312. (PMID: 12373341)
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041908. (PMID: 23214616)
J Theor Biol. 2022 Feb 21;535:110980. (PMID: 34915043)
Biometrika. 1945 Nov;33:183-212. (PMID: 21006835)
Genetics. 2020 Feb;214(2):479-491. (PMID: 31862866)
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20863-8. (PMID: 21078958)
Cancer Res. 2015 Mar 15;75(6):930-9. (PMID: 25627977)
Phys Rev Lett. 2007 Mar 16;98(11):118101. (PMID: 17501094)
Biophys J. 2000 Jul;79(1):144-52. (PMID: 10866943)
J Theor Biol. 2024 Dec 7;595:111957. (PMID: 39369787)
Bull Math Biol. 2015 Jan;77(1):1-22. (PMID: 25480478)
Bull Math Biol. 2009 Jul;71(5):1117-47. (PMID: 19198953)
Science. 1907 Jul 5;26(653):21-2. (PMID: 17754777)
J R Soc Interface. 2024 Jan;21(210):20230587. (PMID: 38196375)
J Theor Biol. 1970 Mar;26(3):399-415. (PMID: 5462335)
Bull Math Biophys. 1965 Dec;27(4):449-71. (PMID: 5883210)
FEBS Lett. 2020 May 22;:. (PMID: 32441778)
Bull Math Biol. 2025 May 19;87(6):77. (PMID: 40388053)
Nature. 1965 Dec 18;208(5016):1183-7. (PMID: 5331254)
J Theor Biol. 2019 Apr 7;466:84-105. (PMID: 30503930)
J Math Biol. 2011 Jan;62(1):111-41. (PMID: 20177685)
J Math Biol. 2001 Oct;43(4):291-312. (PMID: 12120870)
J Math Biol. 2006 Jan;52(1):93-114. (PMID: 16283413)
J Math Biol. 2023 Oct 9;87(5):68. (PMID: 37814160)
J Biol Dyn. 2012;6 Suppl 1:54-71. (PMID: 22873675)
Acta Pathol Microbiol Scand. 1957;41(3):161-82. (PMID: 13469394)
J Theor Biol. 1971 Feb;30(2):235-48. (PMID: 4926702)
F1000Res. 2017 Oct 27;6:1899. (PMID: 29152225)
Bull Math Biol. 2021 Jun 15;83(7):83. (PMID: 34129102)
Math Med Biol. 2006 Sep;23(3):197-229. (PMID: 16648146)
J Math Biol. 2007 Aug;55(2):147-88. (PMID: 17554541)
J Theor Biol. 2018 Aug 14;451:101-110. (PMID: 29750997)
J Theor Biol. 2015 Dec 7;386:166-76. (PMID: 26375370)
Curr Opin Genet Dev. 2011 Dec;21(6):732-9. (PMID: 21862316)
J Math Biol. 2009 Apr;58(4-5):625-56. (PMID: 18853162)
Nat Med. 2013 Nov;19(11):1438-49. (PMID: 24202396)
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):595-601. (PMID: 31871173)
Annu Rev Cell Dev Biol. 2022 Oct 6;38:349-374. (PMID: 35562853)
Math Biosci. 2024 Aug;374:109240. (PMID: 38906525)
Front Cell Dev Biol. 2018 Apr 20;6:28. (PMID: 29732369)
J Math Biol. 2015 Mar;70(4):829-54. (PMID: 24710661)
J Theor Biol. 2019 Nov 21;481:162-182. (PMID: 29944856)
Curr Opin Biotechnol. 2020 Apr;62:202-211. (PMID: 31874388)
Annu Rev Physiol. 2017 Feb 10;79:93-117. (PMID: 27860833)
Nat Commun. 2018 Nov 27;9(1):5005. (PMID: 30479345)
Bull Math Biol. 2018 Jul;80(7):1900-1936. (PMID: 29721746)
J Math Biol. 2020 Jan;80(1-2):343-371. (PMID: 31183520)
Biophys J. 1967 Jul;7(4):329-51. (PMID: 6069910)
Biol Direct. 2016 Aug 23;11:43. (PMID: 27550042)
Nat Rev Microbiol. 2022 Aug;20(8):491-504. (PMID: 35292761)
Semin Cancer Biol. 2015 Feb;30:70-8. (PMID: 24793698)
Bull Math Biol. 2020 Jan 17;82(1):15. (PMID: 31953602)
Theor Popul Biol. 2005 Jun;67(4):257-71. (PMID: 15888304)
J Theor Biol. 1971 Feb;30(2):225-34. (PMID: 4926701)
J Cell Biol. 1984 Jan;98(1):296-307. (PMID: 6707093)
Development. 2015 Jun 1;142(11):2014-25. (PMID: 25977364)
Ecol Lett. 2019 May;22(5):767-777. (PMID: 30887688)
J Membr Biol. 1981;63(1-2):1-11. (PMID: 6273565)
Cell. 2016 Jun 30;166(1):21-45. (PMID: 27368099)
J Math Biol. 2017 Dec;75(6-7):1517-1561. (PMID: 28405746)
J Theor Biol. 1976 Jan;56(1):229-42. (PMID: 1263527)
J Math Biol. 2009 Apr;58(4-5):657-87. (PMID: 18841363)
Math Med Biol. 2003 Dec;20(4):341-66. (PMID: 14969384)
NPJ Syst Biol Appl. 2025 Mar 06;11(1):24. (PMID: 40050291)
Commun Biol. 2022 Jul 6;5(1):668. (PMID: 35794362)
J Theor Biol. 2023 Jan 7;556:111248. (PMID: 36150537)
J Math Biol. 2009 Jan;58(1-2):183-217. (PMID: 18626644)
Biochim Biophys Acta. 2016 Nov;1860(11 Pt B):2627-45. (PMID: 27339473)
Cancer Res. 2003 Jul 15;63(14):3847-54. (PMID: 12873971)
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13235-40. (PMID: 25157127)
Bull Math Biophys. 1965 Sep;27(3):285-304. (PMID: 5866997)
Bull Math Biol. 2008 Aug;70(6):1570-607. (PMID: 18642047)
Biophys J. 1968 Oct;8(10):1055-73. (PMID: 5679389)
Weitere Informationen
Populations are heterogeneous, deviating in numerous ways. Phenotypic diversity refers to the range of traits or characteristics across a population, where for cells this could be the levels of signalling, movement and growth activity, etc. Clearly, the phenotypic distribution - and how this changes over time and space - could be a major determinant of population-level dynamics. For instance, across a cancerous population, variations in movement, growth, and ability to evade death may determine its growth trajectory and response to therapy. In this review, we discuss how classical partial differential equation (PDE) approaches for modelling cellular systems and collective cell migration can be extended to include phenotypic structuring. The resulting non-local models - which we refer to as phenotype-structured partial differential equations (PS-PDEs) - form a sophisticated class of models with rich dynamics. We set the scene through a brief history of structured population modelling, and then review the extension of several classic movement models - including the Fisher-KPP and Keller-Segel equations - into a PS-PDE form. We proceed with a tutorial-style section on derivation, analysis, and simulation techniques. First, we show a method to formally derive these models from underlying agent-based models. Second, we recount travelling waves in PDE models of spatial spread dynamics and concentration phenomena in non-local PDE models of evolutionary dynamics, and combine the two to deduce phenotypic structuring across travelling waves in PS-PDE models. Third, we discuss numerical methods to simulate PS-PDEs, illustrating with a simple scheme based on the method of lines and noting the finer points of consideration. We conclude with a discussion of future modelling and mathematical challenges.
(© 2025. The Author(s).)
Declarations. Ethical statement: Not applicable. Competing interests: The authors have no competing interests to declare that are relevant to the content of this article. Consent for publication: All authors have given approval for publication. Materials availability: Not applicable. Code availability: Python code is available on the GitHub repository https://github.com/ChiaraVilla/LorenziEtAl2025Phenotype under GNU General Public License ( https://www.gnu.org/licenses/ ).