Treffer: ND-AMD: A Web-Based Database for Animal Models of Neurological Disease With Analysis Tools.
Cold Spring Harb Perspect Med. 2011 Sep;1(1):a009316. (PMID: 22229125)
EMBO J. 2017 Sep 1;36(17):2473-2487. (PMID: 28768718)
Lancet Neurol. 2011 Jan;10(1):83-98. (PMID: 21163446)
J Drug Target. 2020 Feb;28(2):111-128. (PMID: 31195838)
J Neurol. 2016 Mar;263(3):611-20. (PMID: 26410744)
Neurology. 2003 Sep 23;61(6 Suppl 3):S4-11. (PMID: 14504374)
Neurobiol Dis. 2008 Oct;32(1):1-9. (PMID: 18638556)
Acta Neuropathol. 2008 Apr;115(4):385-98. (PMID: 18273623)
Cold Spring Harb Perspect Biol. 2017 Jul 5;9(7):. (PMID: 28062563)
Zool Res. 2024 Mar 18;45(2):263-274. (PMID: 38287907)
Methods Mol Biol. 2007;401:365-81. (PMID: 18368375)
Int J Mol Sci. 2022 Mar 20;23(6):. (PMID: 35328770)
BMC Med Res Methodol. 2022 Jul 12;22(1):193. (PMID: 35820854)
Expert Opin Ther Targets. 2016;20(4):389-91. (PMID: 26853544)
J Biomed Semantics. 2019 Apr 24;10(1):7. (PMID: 31014403)
Trends Biochem Sci. 2013 Aug;38(8):378-85. (PMID: 23768628)
Trends Cogn Sci. 2012 Jan;16(1):17-26. (PMID: 22169776)
Nat Rev Neurosci. 2010 Jul;11(7):490-502. (PMID: 20559336)
J Am Assoc Lab Anim Sci. 2015 Mar;54(2):120-32. (PMID: 25836957)
Mov Disord. 2006 Oct;21(10):1595-606. (PMID: 16830310)
Alzheimers Dement (N Y). 2020 Nov 23;6(1):e12110. (PMID: 33283040)
Nature. 2008 Oct 16;455(7215):894-902. (PMID: 18923511)
J Neurosci Methods. 2008 Jul 30;172(2):143-57. (PMID: 18550176)
Vet J. 2012 Apr;192(1):13-9. (PMID: 21703888)
Natl Sci Rev. 2019 Mar;6(2):257-274. (PMID: 31032141)
Acta Neuropathol. 2017 Feb;133(2):155-175. (PMID: 28025715)
Sci Data. 2016 Mar 15;3:160018. (PMID: 26978244)
Hippokratia. 2010 Dec;14(Suppl 1):29-37. (PMID: 21487488)
Trends Pharmacol Sci. 2002 Jan;23(1):32-9. (PMID: 11804649)
Int J Mol Sci. 2022 Oct 25;23(21):. (PMID: 36361643)
Neurotherapeutics. 2012 Apr;9(2):241-4. (PMID: 22460561)
Int J Bipolar Disord. 2017 Oct 13;5(1):35. (PMID: 29027157)
Sci Data. 2020 May 14;7(1):144. (PMID: 32409645)
FEBS J. 2012 Apr;279(7):1156-66. (PMID: 22251459)
Animal Model Exp Med. 2023 Apr;6(2):178-182. (PMID: 36852490)
Lancet Neurol. 2015 Apr;14(4):388-405. (PMID: 25792098)
Alzheimers Dement (N Y). 2024 Mar 10;10(1):e12458. (PMID: 38469553)
Scientometrics. 2010 Aug;84(2):523-538. (PMID: 20585380)
Cold Spring Harb Perspect Med. 2012 Nov 01;2(11):. (PMID: 23002015)
Neuron. 2010 Jun 10;66(5):646-61. (PMID: 20547124)
Int J Mol Sci. 2022 Apr 29;23(9):. (PMID: 35563352)
Psychol Med. 2021 Jun;51(8):1382-1391. (PMID: 32063248)
Behav Brain Funct. 2009 Feb 25;5:11. (PMID: 19243583)
Cell. 2016 Feb 11;164(4):603-15. (PMID: 26871627)
Nat Rev Drug Discov. 2005 Sep;4(9):775-90. (PMID: 16138108)
Neuron. 2011 Feb 10;69(3):423-35. (PMID: 21315254)
Neuropsychiatr Dis Treat. 2014 Sep 09;10:1693-705. (PMID: 25228809)
Br J Pharmacol. 2011 Oct;164(4):1357-91. (PMID: 21486284)
Lab Anim. 2012 Jan;46(1):24-31. (PMID: 22037056)
Zool Res. 2024 Mar 18;45(2):275-283. (PMID: 38485497)
Neuron. 2003 Sep 11;39(6):889-909. (PMID: 12971891)
Adv Exp Med Biol. 2010;671:23-40. (PMID: 20455493)
J Biomed Biotechnol. 2012;2012:845618. (PMID: 22536024)
J Med Libr Assoc. 2018 Oct;106(4):531-541. (PMID: 30271302)
Biochem Pharmacol. 2014 Jan 1;87(1):140-9. (PMID: 23811310)
ILAR J. 2014;55(2):310-32. (PMID: 25225309)
Alzheimers Res Ther. 2011 Sep 28;3(5):28. (PMID: 21943025)
Weitere Informationen
Background: Research on animal models of neurological diseases has primarily focused on understanding pathogenic mechanisms, advacing diagnostic strateggies, developing pharmacotherapies, and exploring preventive interventions. To facilitate comprehensive and systematic studies in this filed, we have developed the Neurological Disease Animal Model Database (ND-AMD), accessible at https://www.uc-med.net/NDAMD. This database is signed around the central theme of "Big Data - Neurological Diseases - Animal Models - Mechanism Research," integrating large-scale, multi-dimensional, and multi-scale data to facilitate in-depth analyses. ND-AMD serves as a resource for panoramic studies, enabling comparative and mechanistic research across diverse experimental conditions, species, and disease models.
Method: Data were systematically retrieved from PubMed, Web of Science, and other relevant databases using Boolean search strategies with standardized MeSH terms and keywords. The collected data were curated and integrated into a structured SQL-based framework, ensuring consistency through automated validation checks and manual verification. Heterogeneity and sensitivity analyses were conducted using Cochran's Q test and the I <sup>2</sup> statistic to assess variability across studies. Statistical workflows were implemented in Python (SciPy, Pandas, NumPy) to support multi-scale data integration, trend analysis, and model validation. Additionally, a text co-occurrence network analysis was performed using Natural Language Processing (TF-IDF and word embeddings) to identify key conceptual linkages and semantic structures across studies.
Results: ND-AMD integrates data from 483 animal models of neurological diseases, covering eight disease categories, 21 specific diseases, 13 species, and 152 strains. The database provides a comprehensive repository of experimental and phenotypic data, covering behavioral, physiological, biochemical, molecular pathology, immunological, and imaging characteristics. Additionally, it incorporates application-oriented data, such as drug evaluation outcomes. To enhance data accessibility and facilitate in-depth analysis, ND-AMD features three custom-developed online tools: Model Frequency Analysis, Comparative Phenotypic Analysis, and Bibliometric Analysis, enabling systematic comparison and trend identification across models and experimental conditions.
Conclusions: The centralized feature of ND-AMD enables comparative analysis across different animal models, strains, and experimental conditions. It helps capture intricate interactions between biological systems at different levels, ranging from molecular mechanisms to cellular processes, neural networks, and behavioral outcomes. These models play a vital role as tools in replicating pathological conditions of neurological diseases. By offering users convenient, efficient, and intuitive access to data, ND-AMD enables researchers to identify patterns, trends, and potential therapeutic targets that may not be apparent in individual studies.
(© 2025 The Author(s). CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.)