Treffer: Machine learning: Python tools for studying biomolecules and drug design.
Davis A, Ward SE (eds) (2015) Handbook of Medicinal Chemistry: Principles and Practice Royal Society of Chemistry. https://doi.org/10.1039/9781782621836.ISBN978-1-78262-419-6.
Watkins RE (2003) 2.1 Å crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry 42:1430–1438. (PMID: 12578355)
Antao, Tiago. Bioinformatics with Python Cookbook: Use modern Python libraries and applications to solve real-world computational biology problems. Packt Publishing Ltd, 2022.
Xia X (2017) Bioinformatics and drug discovery. Curr Top Med Chem 17:1709–1726. https://doi.org/10.2174/1568026617666161116143440. (PMID: 10.2174/1568026617666161116143440278488975421137)
Behl T, Kaur I, Sehgal A et al (2021) Bioinformatics accelerates the major tetrad: a real boost for the pharmaceutical industry. Int J Mol Sci 22:6184. https://doi.org/10.3390/ijms22126184. (PMID: 10.3390/ijms22126184342011528227524)
Liebman MN (2002) Biomedical informatics: the future for drug development. Drug Discov Today 7:S197-203. https://doi.org/10.1016/s1359-6446(02)02479-0. (PMID: 10.1016/s1359-6446(02)02479-012546906)
Ekmekci B, McAnany CE, Mura C (2016) An introduction to programming for bioscientists: a Python-based primer. PLoS Comput Biol 12:e1004867. https://doi.org/10.1371/journal.pcbi.1004867. (PMID: 10.1371/journal.pcbi.1004867272715284896647)
Python programming language. Accessed on November 25, 2024. Available at: Python.org.
Kp Jayatunga M, Ayers M, Bruens L et al (2024) How successful are AI-discovered drugs in clinical trials? A first analysis and emerging lessons. Drug Discov Today 29:104009. https://doi.org/10.1016/j.drudis.2024.104009. (PMID: 10.1016/j.drudis.2024.10400938692505)
Serrano DR, Luciano FC, Anaya BJ et al (2024) Artificial intelligence (AI) applications in drug discovery and drug delivery: revolutionizing personalized medicine. Pharmaceutics 16:1328. https://doi.org/10.3390/pharmaceutics16101328. (PMID: 10.3390/pharmaceutics161013283945865711510778)
Izmailyan R, Matevosyan M, Khachatryan H et al (2024) Discovery of new antiviral agents through artificial intelligence: in vitro and in vivo results. Antiviral Res 222:105818. https://doi.org/10.1016/j.antiviral.2024.105818. (PMID: 10.1016/j.antiviral.2024.10581838280564)
Kanakia A, Sale M, Zhao L, Zhou Z (2025) AI in action: redefining drug discovery and development. Clin Transl Sci 18:e70149. https://doi.org/10.1111/cts.70149. (PMID: 10.1111/cts.701493991267811800368)
Tran NL, Kim H, Shin C-H et al (2023) Artificial intelligence-driven new drug discovery targeting serine/threonine kinase 33 for cancer treatment. Cancer Cell Int 23:321. https://doi.org/10.1186/s12935-023-03176-2. (PMID: 10.1186/s12935-023-03176-23808725410717841)
Rand KD, Grytten I, Pavlovic M, et al (2022) BioNumPy: Fast and easy analysis of biological data with Python. bioRxiv.
Dirmeier S, Emmenlauer M, Dehio C, Beerenwinkel N (2019) PyBDA: a command line tool for automated analysis of big biological data sets. BMC Bioinformatics 20:564. https://doi.org/10.1186/s12859-019-3087-8. (PMID: 10.1186/s12859-019-3087-8317185396849186)
Ryzhkov FV, Ryzhkova YE, Elinson MN (2023) Python in chemistry: physicochemical tools. Processes (Basel) 11:2897. https://doi.org/10.3390/pr11102897. (PMID: 10.3390/pr11102897)
Ryzhkov FV, Ryzhkova YE, Elinson MN (2024) Python tools for structural tasks in chemistry. Mol Divers. https://doi.org/10.1007/s11030-024-10889-7. (PMID: 10.1007/s11030-024-10889-738744790)
Dara S, Dhamercherla S, Jadav SS et al (2022) Machine learning in drug discovery: a review. Artif Intell Rev 55:1947–1999. https://doi.org/10.1007/s10462-021-10058-4. (PMID: 10.1007/s10462-021-10058-434393317)
Turzo SBA, Hantz ER, Lindert S (2022) Applications of machine learning in computer-aided drug discovery. QRB Discov 3:e14. https://doi.org/10.1017/qrd.2022.12. (PMID: 10.1017/qrd.2022.123752929410392679)
Özçelik R, van Tilborg D, Jiménez-Luna J, Grisoni F (2023) Structure-based drug discovery with deep learning. ChemBioChem 24:e202200776. https://doi.org/10.1002/cbic.202200776. (PMID: 10.1002/cbic.20220077637014633)
Mouchlis VD, Afantitis A, Serra A et al (2021) Advances in de Novo drug design: from conventional to machine learning methods. Int J Mol Sci 22:1676. https://doi.org/10.3390/ijms22041676. (PMID: 10.3390/ijms22041676335623477915729)
Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X, Xie Z (2018) Deep learning and its applications in biomedicine. Genom Proteom Bioinform 16:17–32. https://doi.org/10.1016/j.gpb.2017.07.003. (PMID: 10.1016/j.gpb.2017.07.003)
Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N et al (2021) A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J 19:4538–4558. https://doi.org/10.1016/j.csbj.2021.08.011. (PMID: 10.1016/j.csbj.2021.08.011344714988387781)
Nag S, Baidya ATK, Mandal A, et al (2022) Deep learning tools for advancing drug discovery and development. 3 Biotech 12:110. https://doi.org/10.1007/s13205-022-03165-8.
Biopython. In: Biopython.org. Accessed 26 Feb 2025 . Available at: http://biopython.org .
rdkit: The official sources for the RDKit library. Accessed on November 25, 2024. Available at: https://github.com/rdkit/rdkit.
O’Boyle NM, Morley C, Hutchison GR (2008) Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem Cent J 2:5. https://doi.org/10.1186/1752-153X-2-5. (PMID: 10.1186/1752-153X-2-5183281092270842)
Dong J, Yao Z-J, Zhang L et al (2018) PyBioMed: a python library for various molecular representations of chemicals, proteins and DNAs and their interactions. J Cheminform 10:16. https://doi.org/10.1186/s13321-018-0270-2. (PMID: 10.1186/s13321-018-0270-2295567585861255)
Rodrigues JPGLM, Teixeira JMC, Trellet M, Bonvin AMJJ (2018) Pdb-tools: a swiss army knife for molecular structures. F1000Res 7:1961. https://doi.org/10.12688/f1000research.17456.1.
Terlouw BR, Vromans SPJM, Medema MH (2022) PIKAChU: a Python-based informatics kit for analysing chemical units. J Cheminform 14:34. https://doi.org/10.1186/s13321-022-00616-5. (PMID: 10.1186/s13321-022-00616-5356727699172152)
Korshunova M, Ginsburg B, Tropsha A, Isayev O (2021) OpenChem: a deep learning toolkit for computational chemistry and drug design. J Chem Inf Model 61:7–13. https://doi.org/10.1021/acs.jcim.0c00971. (PMID: 10.1021/acs.jcim.0c0097133393291)
Ryzhkova YE, Elinson MN, Vereshchagin AN, et al (2022) Green electrocatalytic assembling of salicylaldehydes, kojic acid, and malonic acid derivatives into 2‐amino‐4H‐chromenes as potent anti‐inflammatory agents. ChemistrySelect 7. https://doi.org/10.1002/slct.202202872.
Ryzhkova YE, Elinson MN, Vereshchagin AN et al (2022) Multicomponent electrocatalytic selective approach to unsymmetrical Spiro[furo[3,2-c]pyran-2,5′-pyrimidine] scaffold under a column chromatography-free protocol at room temperature. Chemistry (Basel) 4:615–629. https://doi.org/10.3390/chemistry4020044. (PMID: 10.3390/chemistry4020044)
Yang Z-Y, Yang Z-J, Lu A-P, et al (2021) Scopy: an integrated negative design python library for desirable HTS/VS database design. Brief Bioinform 22.. https://doi.org/10.1093/bib/bbaa194.
Li S, Song Y, Liu X, Li H (2016) A rapid python-based methodology for target-focused combinatorial library design. Comb Chem High Throughput Screen 19:25–35. https://doi.org/10.2174/1386207318666151102094055. (PMID: 10.2174/138620731866615110209405526522993)
Durrant JD, McCammon JA (2012) AutoClickChem: click chemistry in silico. PLoS Comput Biol 8:e1002397. https://doi.org/10.1371/journal.pcbi.1002397. (PMID: 10.1371/journal.pcbi.1002397224387953305364)
Duffy FJ, Verniere M, Devocelle M et al (2011) CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids. J Chem Inf Model 51:829–836. https://doi.org/10.1021/ci100431r. (PMID: 10.1021/ci100431r21434641)
Polishchuk P (2020) CReM: chemically reasonable mutations framework for structure generation. J Cheminform 12:28. https://doi.org/10.1186/s13321-020-00431-w . Accessed on November 25, 2024. Available at: https://www.qsar4u.com/pages/crem.php.
Yang Z-Y, Yang Z-J, Zhao Y, et al (2021) PySmash: Python package and individual executable program for representative substructure generation and application. Brief Bioinform 22. https://doi.org/10.1093/bib/bbab017.
Lai J, Li X, Wang Y et al (2021) AIScaffold: a web-based tool for scaffold diversification using deep learning. J Chem Inf Model 61:1–6. https://doi.org/10.1021/acs.jcim.0c00867. (PMID: 10.1021/acs.jcim.0c0086733356237)
Ferrari T, Cattaneo D, Gini G et al (2013) Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR QSAR Environ Res 24:365–383. https://doi.org/10.1080/1062936X.2013.773376. (PMID: 10.1080/1062936X.2013.77337623710765)
Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4:eaap7885. https://doi.org/10.1126/sciadv.aap7885.
Walters PW (2014) Chemoinformatics for drug discovery, 1st edn. (Eds J. Bajorath.) Wiley, Nashville, p. 1.
Casas-Orozco D, Laky D, Wang V et al (2021) PharmaPy: an object-oriented tool for the development of hybrid pharmaceutical flowsheets. Comput Chem Eng 153:107408. https://doi.org/10.1016/j.compchemeng.2021.107408. (PMID: 10.1016/j.compchemeng.2021.1074083823536810793241)
Cereto-Massagué A, Ojeda MJ, Valls C et al (2015) Molecular fingerprint similarity search in virtual screening. Methods 71:58–63. https://doi.org/10.1016/j.ymeth.2014.08.005. (PMID: 10.1016/j.ymeth.2014.08.00525132639)
The Cambridge Structural Database. In: Cam.ac.uk. Accessed on November 25, 2024. Available at: https://www.ccdc.cam.ac.uk/solutions/software/csd/ .
Spiegel JO, Durrant JD (2020) AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. J Cheminform 12:25. https://doi.org/10.1186/s13321-020-00429-4. (PMID: 10.1186/s13321-020-00429-4334310217165399)
John PS, Lin D, Binder P et al (2024) BioNeMo Framework: a modular, high-performance library for AI model development in drug discovery. https://doi.org/10.48550/arXiv.2411.10548.
Generative-virtual-screening: NVIDIA BioNeMo blueprint for generative AI-based virtual. Accessed on March 31, 2024. https://github.com/NVIDIA-BioNeMo-blueprints/generative-virtual-screening?tab=readme-ov-file#system-requirements.
Muchmore SW, Debe DA, Metz JT et al (2008) Application of belief theory to similarity data fusion for use in analog searching and lead hopping. J Chem Inf Model 48:941–948. https://doi.org/10.1021/ci7004498. (PMID: 10.1021/ci700449818416545)
Shao Y, Hellström M, Mitev PD et al (2020) PiNN: a python library for building atomic neural networks of molecules and materials. J Chem Inf Model 60:1184–1193. https://doi.org/10.1021/acs.jcim.9b00994. (PMID: 10.1021/acs.jcim.9b0099431935100)
De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061. https://doi.org/10.1021/acs.jmedchem.5b01684. (PMID: 10.1021/acs.jmedchem.5b0168426807648)
Gowers R, Linke M, Barnoud J, et al (2016) MDAnalysis: a python package for the rapid analysis of molecular dynamics simulations. In: Proceedings of the Python in Science Conference. SciPy, pp 98–105 https://doi.org/10.25080/majora-629e541a-00e.
Nugmanov RI, Mukhametgaleev RN, Akhmetshin T et al (2019) CGRtools: Python library for molecule, reaction, and condensed graph of reaction processing. J Chem Inf Model 59:2516–2521. https://doi.org/10.1021/acs.jcim.9b00102. (PMID: 10.1021/acs.jcim.9b0010231063394)
Insturction for CGRTools. Accessed on November 25, 2024. Available at: https://doi.org/10.1021/acs.jcim.9b00102/suppl_file/ci9b00102_si_001.pdf.
LNAplusplus: LNA++: a Fast C++ Implementation of the Linear Noise Approximation with first- and second-order sensitivities. Accessed on November 25, 2024. Available at: https://github.com/ICB-DCM/LNAplusplus/tree/master.
Nextmovesoftware (2023). CaffeineFix. Accessed on November 25, 2023. Available at: nextmovesoftware.com/caffeinefix.html.
Kannas C, Genheden S (2022) Rxnutils – A cheminformatics Python library for manipulating chemical reaction data. ChemRxiv.
Thakkar A, Kogej T, Reymond J-L et al (2020) Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chem Sci 11:154–168. https://doi.org/10.1039/c9sc04944d. (PMID: 10.1039/c9sc04944d32110367)
Price GW, Gould PS, Marsh A (2014) Use of freely available and open source tools for in silico screening in chemical biology. J Chem Educ 91:602–604. https://doi.org/10.1021/ed400302u. (PMID: 10.1021/ed400302u)
Gentile F, Agrawal V, Hsing M et al (2020) Deep Docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci 6:939–949. https://doi.org/10.1021/acscentsci.0c00229. (PMID: 10.1021/acscentsci.0c00229326074417318080)
Ben Geoffrey AS, Christian Prasana J, Muthu S (2022) Structure-activity relationship of Quercetin and its tumor necrosis factor alpha inhibition activity by computational and machine learning methods. Mater Today 50:2609–2614. https://doi.org/10.1016/j.matpr.2020.07.464. (PMID: 10.1016/j.matpr.2020.07.464)
Kim S, Cho K-H (2018) PyQSAR: a fast QSAR modeling platform using machine learning and jupyter notebook. Bull Korean Chem Soc. https://doi.org/10.1002/bkcs.11638. (PMID: 10.1002/bkcs.11638)
Lagorce D, Sperandio O, Galons H et al (2008) FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinform 9:396. https://doi.org/10.1186/1471-2105-9-396. (PMID: 10.1186/1471-2105-9-396)
Lumley JA, Desai P, Wang J et al (2020) The derivation of a matched Molecular Pairs based ADME/Tox knowledge base for compound optimization. J Chem Inf Model 60:4757–4771. https://doi.org/10.1021/acs.jcim.0c00583. (PMID: 10.1021/acs.jcim.0c0058332975944)
Dalke A, Hert J, Kramer C (2018) Mmpdb: an open-source matched molecular pair platform for large multiproperty data sets. J Chem Inf Model 58:902–910. https://doi.org/10.1021/acs.jcim.8b00173. (PMID: 10.1021/acs.jcim.8b0017329770697)
Reif DM, Martin MT, Tan SW et al (2010) Endocrine profiling and prioritization of environmental chemicals using ToxCast data. Environ Health Perspect 118:1714–1720. https://doi.org/10.1289/ehp.1002180. (PMID: 10.1289/ehp.1002180208263733002190)
Sipes NS, Martin MT, Kothiya P et al (2013) Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol 26:878–895. https://doi.org/10.1021/tx400021f. (PMID: 10.1021/tx400021f236112933685188)
Judson RS, Houck KA, Kavlock RJ et al (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118:485–492. https://doi.org/10.1289/ehp.0901392. (PMID: 10.1289/ehp.090139220368123)
Knight AW, Little S, Houck K et al (2009) Evaluation of high-throughput genotoxicity assays used in profiling the US EPA ToxCast chemicals. Regul Toxicol Pharmacol 55:188–199. https://doi.org/10.1016/j.yrtph.2009.07.004. (PMID: 10.1016/j.yrtph.2009.07.00419591892)
Jimenez-Carretero D, Abrishami V, Fernández-de-Manuel L et al (2018) Tox_(R)CNN: deep learning-based nuclei profiling tool for drug toxicity screening. PLoS Comput Biol 14:e1006238. https://doi.org/10.1371/journal.pcbi.1006238. (PMID: 10.1371/journal.pcbi.1006238305008216291153)
Cortes-Ciriano I (2016) Bioalerts: a python library for the derivation of structural alerts from bioactivity and toxicity data sets. J Cheminform 8:13. https://doi.org/10.1186/s13321-016-0125-7. (PMID: 10.1186/s13321-016-0125-7269494174779235)
Moyer D, Pacheco AR, Bernstein DB, Segrè D (2021) Stoichiometric modeling of artificial string chemistries reveals constraints on metabolic network structure. J Mol Evol 89:472–483. https://doi.org/10.1007/s00239-021-10018-0. (PMID: 10.1007/s00239-021-10018-0342309928318951)
Wang D, Liu W, Shen Z et al (2019) Deep learning based drug metabolites prediction. Front Pharmacol 10:1586. https://doi.org/10.3389/fphar.2019.01586. (PMID: 10.3389/fphar.2019.0158632082146)
Smith RW, van Rosmalen RP, Martins Dos Santos VAP, Fleck C (2018) DMPy: a Python package for automated mathematical model construction of large-scale metabolic systems. BMC Syst Biol 12:72. https://doi.org/10.1186/s12918-018-0584-8. (PMID: 10.1186/s12918-018-0584-8299144756006996)
Reker D, Brown JB (2018) Selection of informative examples in chemogenomic datasets. Methods Mol Biol 1825:369–410. https://doi.org/10.1007/978-1-4939-8639-2_13. (PMID: 10.1007/978-1-4939-8639-2_1330334214)
Ulrich EL, Akutsu H, Doreleijers JF et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408. https://doi.org/10.1093/nar/gkm957. (PMID: 10.1093/nar/gkm95717984079)
Masand VH, Rastija V (2017) PyDescriptor: a new PyMOL plugin for calculating thousands of easily understandable molecular descriptors. Chemometr Intell Lab Syst 169:12–18. https://doi.org/10.1016/j.chemolab.2017.08.003. (PMID: 10.1016/j.chemolab.2017.08.003)
Cao D-S, Liang Y-Z, Yan J et al (2013) PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies. J Chem Inf Model 53:3086–3096. https://doi.org/10.1021/ci400127q. (PMID: 10.1021/ci400127q24047419)
Konopka BM, Marciniak M, Dyrka W (2017) Quantiprot—a Python package for quantitative analysis of protein sequences. BMC Bioinformatics 18:339. https://doi.org/10.1186/s12859-017-1751-4. (PMID: 10.1186/s12859-017-1751-4287160005512976)
Brandes N, Ofer D, Linial M (2016) ASAP: a machine learning framework for local protein properties. Database (Oxford) 2016:. https://doi.org/10.1093/database/baw133.
Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2. (PMID: 10.1038/s41586-021-03819-2342658448371605)
Pfleger C, Rathi PC, Klein DL et al (2013) Constraint Network Analysis (CNA): a Python software package for efficiently linking biomacromolecular structure, flexibility, (thermo-)stability, and function. J Chem Inf Model 53:1007–1015. https://doi.org/10.1021/ci400044m. (PMID: 10.1021/ci400044m23517329)
Lowe AR, Perez-Riba A, Itzhaki LS, Main ERG (2018) PyFolding: open-source graphing, simulation, and analysis of the biophysical properties of proteins. Biophys J 114:516–521. https://doi.org/10.1016/j.bpj.2017.11.3779. (PMID: 10.1016/j.bpj.2017.11.3779294146975985001)
Yuan S-S, Gao D, Xie X-Q et al (2022) IBPred: a sequence-based predictor for identifying ion binding protein in phage. Comput Struct Biotechnol J 20:4942–4951. https://doi.org/10.1016/j.csbj.2022.08.053. (PMID: 10.1016/j.csbj.2022.08.053361476709474292)
Frolov AI, Chankeshwara SV, Abdulkarim Z, Ghiandoni GM (2023) PIChemiSt─free tool for the calculation of isoelectric points of modified peptides. J Chem Inf Model 63:187–196. https://doi.org/10.1021/acs.jcim.2c01261. (PMID: 10.1021/acs.jcim.2c0126136573842)
CNAnalysis project. Accessed on November 25, 2024. Available at: https://cpclab.uni-duesseldorf.de/cna/.
IBPred project. Accessed on November 25, 2024. Available at: https://github.com/ShishiYuan/IBPred.
Satzinger H (2008) Theodor and Marcella Boveri: chromosomes and cytoplasm in heredity and development. Nat Rev Genet 9:231–238. https://doi.org/10.1038/nrg2311. (PMID: 10.1038/nrg231118268510)
Gualdi F, Oliva B, Piñero J (2024) Genopyc: a Python library for investigating the functional effects of genomic variants associated to complex diseases. Bioinformatics 40:. https://doi.org/10.1093/bioinformatics/btae379.
Visscher PM, Wray NR, Zhang Q et al (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22. https://doi.org/10.1016/j.ajhg.2017.06.005. (PMID: 10.1016/j.ajhg.2017.06.005286868565501872)
Dedov II, Smirnova OM, Kononenko IV (2014) Significance of the results of genome-wide association studies for primary prevention of type 2 diabetes mellitus and its complications. Personalised approach. Diabetes Mellit 17:10–19. https://doi.org/10.14341/dm2014210-19.
Burdett T, Hastings E, Welter D, et al GWAS Catalog. In: Ebi.ac.uk. Accessed on March 31, 2024. https://www.ebi.ac.uk/gwas/ .
Zhang Y, Kim MS, Reichenberger ER et al (2020) Scedar: a scalable Python package for single-cell RNA-seq exploratory data analysis. PLoS Comput Biol 16:e1007794. https://doi.org/10.1371/journal.pcbi.1007794. (PMID: 10.1371/journal.pcbi.1007794323391637217489)
Klein J, Zaia J (2019) glypy: an open source glycoinformatics library. J Proteome Res 18:3532–3537. https://doi.org/10.1021/acs.jproteome.9b00367. (PMID: 10.1021/acs.jproteome.9b00367313105397158751)
Lundstrøm J, Urban J, Thomès L, Bojar D (2023) GlycoDraw: a python implementation for generating high-quality glycan figures. Glycobiology 33:927–934. https://doi.org/10.1093/glycob/cwad063. (PMID: 10.1093/glycob/cwad0633749817210859633)
Weiss CJ (2017) Scientific computing for chemists: an undergraduate course in simulations, data processing, and visualization. J Chem Educ 94:592–597. https://doi.org/10.1021/acs.jchemed.7b00078. (PMID: 10.1021/acs.jchemed.7b00078)
Craig PA, Nash JA, Crawford TD (2022) Python scripting for biochemistry and molecular biology in Jupyter Notebooks. Biochem Mol Biol Educ 50:479–482. https://doi.org/10.1002/bmb.21676. (PMID: 10.1002/bmb.2167636093574)
Engelberger F, Galaz-Davison P, Bravo G et al (2021) Developing and implementing cloud-based tutorials that combine bioinformatics software, interactive coding, and visualization exercises for distance learning on structural bioinformatics. J Chem Educ 98:1801–1807. https://doi.org/10.1021/acs.jchemed.1c00022. (PMID: 10.1021/acs.jchemed.1c00022)
Sydow D, Rodríguez-Guerra J, Volkamer A (2021) Teaching computer-aided drug design using TeachOpenCADD. ACS Symposium Series. American Chemical Society, Washington, DC, pp 135–158.
Sydow D, Morger A, Driller M, Volkamer A (2019) TeachOpenCADD: a teaching platform for computer-aided drug design using open source packages and data. J Cheminform 11:29. https://doi.org/10.1186/s13321-019-0351-x. (PMID: 10.1186/s13321-019-0351-x309632876454689)
Saldívar-González FI, Huerta-García CS, Medina-Franco JL (2020) Chemoinformatics-based enumeration of chemical libraries: a tutorial. J Cheminform 12:64. https://doi.org/10.1186/s13321-020-00466-z. (PMID: 10.1186/s13321-020-00466-z333726227590480)
ZINC Sigma Aldrich (Building Blocks). Accessed on November 25, 2024. Available at: https://zinc.docking.org/catalogs/sialbb/.
Weitere Informationen
The increasing adoption of computational methods and artificial intelligence in scientific research has led to a growing interest in versatile tools like Python. In the fields of medical chemistry, biochemistry, and bioinformatics, Python has emerged as a key language for tackling complex challenges. It is used to solve various tasks, such as drug discovery, high-throughput and virtual screening, protein and genome analysis, and predicting drug efficacy. This review presents a list of tools for these tasks, including scripts, libraries, and ready-made programs, and serves as a starting point for scientists wishing to apply automation or optimization to routine tasks in medical chemistry and bioinformatics.
(© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
Declarations. Conflict of interest: The authors declare no competing interests.