Treffer: Enhancing in search of Milankovitch cycles from stratigraphic record using convex optimization algorithm.

Title:
Enhancing in search of Milankovitch cycles from stratigraphic record using convex optimization algorithm.
Authors:
Alam S; Faculty of Geological Engineering, Universitas Padjadjaran, Sumedang, 45363, Indonesia. syaiful.alam@unpad.ac.id., Hadian MSD; Faculty of Geological Engineering, Universitas Padjadjaran, Sumedang, 45363, Indonesia., Hamdani AH; Faculty of Geological Engineering, Universitas Padjadjaran, Sumedang, 45363, Indonesia., Sulaiman N; Department of Geoscience, Faculty of Earth Science, Universiti Malaysia Kelantan, Campus Jeli, 17600 Jeli, Kelantan, Malaysia.
Source:
Scientific reports [Sci Rep] 2025 Jan 07; Vol. 15 (1), pp. 1099. Date of Electronic Publication: 2025 Jan 07.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
Hennebert, M. The Cretaceous-Palegene boundary and its 405-kyr eccentricity cycle phase: A new constraint on radiometric dating and astrochronology. Carnets de Geologie Notebooks Geol. 14, 173–189 (2014). (PMID: 10.4267/2042/53981)
Gunderson, K., Kodama, K., Anastasio, D. & Pazzaglia, F. Rock-magnetic cyclostratigraphy for the Late Pliocene-Early Pleistocene Stirone section, Northern Apennine mountain front, Italy. Geol. Soc. London Special Publ. 373, 309–323 (2013). (PMID: 10.1144/SP373.8)
Du, W. et al. Cyclostratigraphy and astronomical tuning during the Oligocene in the Jizhong Depression, Bohai Bay Basin, northeastern China. Palaeogeogr Palaeoclimatol Palaeoecol 554, 109803 (2020). (PMID: 10.1016/j.palaeo.2020.109803)
Hilgen, F. J. et al. Stratigraphic continuity and fragmentary sedimentation: The success of cyclostratigraphy as part of integrated stratigraphy. Geol. Soc., London, Special Publ. 404, 157–197 (2015). (PMID: 10.1144/SP404.12)
Shen, C., Schmitz, M., Johnson, P., Davies, J. H. F. L. & Halverson, G. P. U-Pb geochronology and cyclostratigraphy of the middle Ediacaran upper Jibalah Group, eastern Arabian Shield. Precambrian Res 375, 106674 (2022). (PMID: 10.1016/j.precamres.2022.106674)
Strasser, A. H. & Heckel, P. H. Cyclostratigraphy concepts, definitions, and applications. Newsl Stratigr 42, 75–114 (2007). (PMID: 10.1127/0078-0421/2006/0042-0075)
Meyers, S. R. Seeing red in cyclic stratigraphy: Spectral noise estimation for astrochronology. Paleoceanography https://doi.org/10.1029/2012PA002307 (2012). (PMID: 10.1029/2012PA002307)
Trauth, M. H. MATLAB Recipes for Earth Sciences (Springer-Verlag, 2015). (PMID: 10.1007/978-3-662-46244-7)
Weedon, G. P. Problems with the current practice of spectral analysis in cyclostratigraphy: Avoiding false detection of regular cyclicity. Earth Sci Rev 235, 104261 (2022). (PMID: 10.1016/j.earscirev.2022.104261)
Hajek, E. A. & Straub, K. M. Autogenic sedimentation in clastic stratigraphy. Annu Rev Earth Planet Sci 45, 681–709 (2017). (PMID: 10.1146/annurev-earth-063016-015935)
Charkhgard, H., Savelsbergh, M. & Talebian, M. A linear programming based algorithm to solve a class of optimization problems with a multi-linear objective function and affine constraints. Comput Oper Res 89, 17–30 (2018). (PMID: 10.1016/j.cor.2017.07.015)
Salman, A. M., Alridha, A. & Hussain, A. H. Some topics on convex optimization. J Phys Conf Ser 1818, 12171 (2021). (PMID: 10.1088/1742-6596/1818/1/012171)
Acer, S., Selvitopi, O. & Aykanat, C. Improving performance of sparse matrix dense matrix multiplication on large-scale parallel systems. Parallel Comput 59, 71–96 (2016). (PMID: 10.1016/j.parco.2016.10.001)
Yadav, V. & Michalak, A. M. Technical Note: Improving the computational efficiency of sparse matrix multiplication in linear atmospheric inverse problems. Geosci. Model Dev. Discuss. 2016, 1–15 (2016).
Tuan, P. D. Maximum likelihood estimation of the autoregressive model by relaxation on the reflection coefficients. IEEE Trans. Acoust. 36, 1363–1367 (1988). (PMID: 10.1109/29.1667)
Zhang, R.-M. & Chan, N. H. Maximum likelihood estimation for nearly non-stationary stable autoregressive processes. J. Time Ser. Anal. 33, 542–553 (2012). (PMID: 10.1111/j.1467-9892.2011.00762.x)
Kallas, M., Honeine, P., Richard, C., Francis, C. & Amoud, H. Prediction of time series using Yule-Walker equations with kernels. in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2185–2188 (2012). https://doi.org/10.1109/ICASSP.2012.6288346 .
Ward, M. P., Iglesias, R. M. & Brookes, V. J. Autoregressive models applied to time-series data in veterinary science. Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.00604 (2020). (PMID: 10.3389/fvets.2020.00604335752757527444)
Dimitriou-Fakalou, C. Yule-Walker estimation for the moving-average model. Int. J. Stochastic Anal. 2011, 151823 (2011).
Vaughan, S., Bailey, R. J. & Smith, D. Detecting cycles in stratigraphic data: spectral analysis in the presence of red noise. Paleoceanography 26, 1–15 (2011). (PMID: 10.1029/2011PA002195)
Aswan, A. & Ozawa, T. Milankovitch 41000-year cycles in lithofacies and molluscan content in the tropical Middle Miocene Nyalindung Formation, Jawa Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 235, 382–405 (2006). (PMID: 10.1016/j.palaeo.2005.11.004)
Frigola, A., Prange, M. & Schulz, M. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0). Geosci. Model Dev. 11, 1607–1626 (2018). (PMID: 10.5194/gmd-11-1607-2018)
Methner, K. et al. Middle Miocene long-term continental temperature change in and out of pace with marine climate records. Sci. Rep. 10, 7989 (2020). (PMID: 32409728722429510.1038/s41598-020-64743-5)
Song, Y. et al. Mid-Miocene climatic optimum: Clay mineral evidence from the red clay succession, Longzhong Basin Northern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 46–55 (2018). (PMID: 10.1016/j.palaeo.2017.10.001)
Kürschner, W. M., Kvaček, Z. & Dilcher, D. L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Nat. Acad. Sci. 105, 449–453 (2008). (PMID: 18174330220655610.1073/pnas.0708588105)
Steinthorsdottir, M. et al. The Miocene: The Future of the Past. Paleoceanogr Paleoclimatol 36, (2021).
Westerhold, T., Bickert, T. & Röhl, U. Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): New constrains on Miocene climate variability and sea-level fluctuations. Preprint at https://doi.org/10.1594/PANGAEA.694041 , (2005).
Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci Adv 6, eaaz1346 (2020). (PMID: 32440543722874910.1126/sciadv.aaz1346)
Foster, G. L., Lear, C. H. & Rae, J. W. B. The evolution of pCO2, ice volume and climate during the middle Miocene. Earth Planet Sci. Lett. 341–344, 243–254 (2012). (PMID: 10.1016/j.epsl.2012.06.007)
Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Nat. Acad. Sci. 105, 10676–10680 (2008). (PMID: 18678903249501110.1073/pnas.0802501105)
Herold, N., Huber, M. & Müller, R. D. Modeling the Miocene climatic optimum. part I: Land and atmosphere. J. Clim. 24, 6353–6372 (2011). (PMID: 10.1175/2011JCLI4035.1)
Hui, Z. et al. Global warming and rainfall: Lessons from an analysis of Mid-Miocene climate data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 106–117 (2018). (PMID: 10.1016/j.palaeo.2018.10.025)
Bhattacharya, J. P. et al. Time-stratigraphy in point sourced river deltas: Application to sediment budgets, shelf construction, and paleo-storm records. Earth Sci. Rev. 199, 102985 (2019). (PMID: 10.1016/j.earscirev.2019.102985)
Lane, T. I., Nanson, R. A., Vakarelov, B. K., Ainsworth, R. B. & Dashtgard, S. E. Evolution and architectural styles of a forced-regressive Holocene delta and megafan, Mitchell River, Gulf of Carpentaria, Australia. Geol. Soc. London, Special Publ. 444, 305–334 (2017). (PMID: 10.1144/SP444.9)
OLARIU, C. Autogenic process change in modern deltas. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin 149–166 Preprint at https://doi.org/10.1002/9781118920435.ch7 (2014).
Marshall, N., Zeeden, C., Hilgen, F. & Krijgsman, W. Milankovitch cycles in an equatorial delta from the Miocene of Borneo. Earth Planet Sci. Lett. 472, 229–240 (2017). (PMID: 10.1016/j.epsl.2017.04.015)
Peeters, J., Busschers, F. S. & Stouthamer, E. Fluvial evolution of the Rhine during the last interglacial-glacial cycle in the southern North Sea basin: A review and look forward. Quaternary Int. 357, 176–188 (2015). (PMID: 10.1016/j.quaint.2014.03.024)
Husein, S. & Lambiase, J. Sediment dynamics and depositional systems of the Mahakam Delta, Indonesia: Ongoing delta abandonment on a tide-dominated coast. J. Sedimentary Res. 83, 503–521 (2013). (PMID: 10.2110/jsr.2013.42)
Marshall, N. et al. Dating Borneo’s deltaic deluge: Middle Miocene progradation of the Mahakam delta. Palaios 30, 7–25 (2015). (PMID: 10.2110/palo.2013.066)
Kapid, R., Dwijo, W., Ikhsan, B., Jambak, M. & Irawan, D. The mid miocene climatic optimum (MMCO) indication at low latitude sediment case study: The Miocene Cibulakan Formation, Bogor Basin, Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 9, 594 (2019). (PMID: 10.18517/ijaseit.9.2.7573)
Dennell, R. W., Louys, J., O’Regan, H. J. & Wilkinson, D. M. The origins and persistence of Homo floresiensis on Flores: Biogeographical and ecological perspectives. Quat. Sci. Rev. 96, 98–107 (2014). (PMID: 10.1016/j.quascirev.2013.06.031)
Hilgen, S. L., Hilgen, F. J., Adhityatama, S., Kuiper, K. F. & Joordens, J. C. A. Towards an astronomical age model for the Lower to Middle Pleistocene hominin-bearing succession of the Sangiran Dome area on Java Indonesia. Quat. Sci. Rev. 297, 107788 (2022). (PMID: 10.1016/j.quascirev.2022.107788)
Siesser, W. G., Orchiston, D. W. & Djubiantono, T. Micropalaeontological investigation of late Pliocene marine sediments at Sangiran Central Java. Alcheringa: An Australasian J. Palaeontol. 8, 87–99 (1984). (PMID: 10.1080/03115518408618935)
van Heteren, A. H. The hominins of Flores: Insular adaptations of the lower body. C R Palevol 11, 169–179 (2012). (PMID: 10.1016/j.crpv.2011.04.001)
Yurnaldi, D., Setiawan, R. & Patriani, E. The Magnetostratigraphy and the Age of So’a Basin Fossil-Bearing Sequence, Flores Indonesia. Indonesian J. Geosci 5, 221 (2018). (PMID: 10.17014/ijog.5.3.221-234)
Jin, S., Cao, H., Wang, H., Wagreich, M. & Richoz, S. Orbital cyclicity in sedimentary sequence and climatic indications of C-O isotopes from Lower Cretaceous in Qingxi Sag, Jiuquan Basin NW China. Geosci. Front. 10, 467–479 (2019). (PMID: 10.1016/j.gsf.2018.01.005)
Liu, W. et al. Early cretaceous terrestrial milankovitch cycles in the Luanping Basin, North China and time constraints on early stage Jehol Biota evolution. Front. Earth Sci. (Lausanne) https://doi.org/10.3389/feart.2020.00178 (2020). (PMID: 10.3389/feart.2020.00178)
Peter, R., Kuttippurath, J., Chakraborty, K. & Sunanda, N. A high concentration CO2 pool over the Indo-Pacific Warm Pool. Sci. Rep. 13, 4314 (2023). (PMID: 369226521001781110.1038/s41598-023-31468-0)
Zhang, S. et al. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years. Nat. Commun. 13, 5457 (2022). (PMID: 36115856948261810.1038/s41467-022-33206-y)
De Deckker, P. The Indo-Pacific Warm Pool: Critical to world oceanography and world climate. Geosci. Lett. 3, 20 (2016). (PMID: 10.1186/s40562-016-0054-3)
Ulfers, A. et al. Cyclostratigraphy and paleoenvironmental inference from downhole logging of sediments in tropical Lake Towuti Indonesia. J. Paleolimnol. 65, 1–16 (2021). (PMID: 10.1007/s10933-020-00171-9)
Pardo-Igúzquiza, E. & Rodrı́guez-Tovar, F. J. POWGRAF2 A program for graphical spectral analysis in cyclostratigraphy. Comput. Geosci. 30, 533–542 (2004). (PMID: 10.1016/j.cageo.2004.03.004)
Sinnesael, M., Zivanovic, M., De Vleeschouwer, D. & Claeys, P. Spectral moments in cyclostratigraphy: Advantages and disadvantages compared to more classic approaches. Paleoceanogr. Paleoclimatol. 33, 493–510 (2018). (PMID: 10.1029/2017PA003293)
Aswan, et al. Late Miocene Molluscan stage of Jawa insight from new field studies. IOP Conf. Ser. Earth Environ. Sci. 71, 12031 (2017). (PMID: 10.1088/1755-1315/71/1/012031)
Merle, D. & Landau, B. Review of the paleobiogeography of Eofavartia Merle, 2002 (Gastropoda: Muricidae) with the description of a new species from the Miocene of Java (Indonesia). Annales de Paléontologie 106, 102444 (2020). (PMID: 10.1016/j.annpal.2020.102444)
Chunlian, L. et al. Miocene-Pliocene planktonic foraminiferal biostratigraphy of the Pearl River Mouth Basin, northern South China Sea. J. Palaeogeogr. 1, 43–56 (2012).
Baksi, A. K. A geomagnetic polarity time scale for the period 0–17 Ma, based on 40Ar/39Ar plateau ages for selected field reversals. Geophys. Res. Lett. 20, 1607–1610 (1993). (PMID: 10.1029/93GL01876)
Holbourn, A. et al. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42, 19–22 (2014). (PMID: 10.1130/G34890.1)
Shifeng, T., Zhongqiang, C., Chunju, H., Changhai, G. A. O. & Ming, Z. H. A. Astronomical Dating of the Middle Miocene Hanjiang Formation in the Pearl River Mouth Basin, South China Sea. Acta Geologica Sinica - English Edition 87, 48–58 (2013). (PMID: 10.1111/1755-6724.12029)
Lukács, R. et al. Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): Eruption chronology, correlation potential and geodynamic implications. Earth Sci. Rev. 179, 1–19 (2018). (PMID: 10.1016/j.earscirev.2018.02.005)
Sadler, P. M. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89, 569–584 (1981). (PMID: 10.1086/628623)
Budd, D. A., Hajek A, E. & Purkis, S. j. Autogenic dynamics and self-organization in sedimentary systems. SEPM Society for Sedimentary Geology 106, (2016).
Kim, W., Petter, A., Straub, K. & Mohrig, D. Investigating the autogenic process response to allogenic forcing: experimental geomorphology and stratigraphy. in Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin (eds. Martinius, A. W., Ravnas, R., Howell, J. A., Steel, R. J. & Wonham, J. P.) vol. 46 127–138 (John Wiley & Sons, Ltd, 2014).
Meek, S. R., Carrapa, B. & DeCelles, P. G. Recognizing allogenic controls on the stratigraphic architecture of ancient alluvial fans in the western US. Front. Earth Sci. (Lausanne) https://doi.org/10.3389/feart.2020.00215 (2020). (PMID: 10.3389/feart.2020.00215)
Li, M., Hinnov, L. & Kump, L. Acycle: Time-series analysis software for paleoclimate research and education. Comput. Geosci. 127, 12–22 (2019). (PMID: 10.1016/j.cageo.2019.02.011)
Meyers, S. Astrochron: An R package for astrochronology. (2014).
Hilgen, K. Cyclostratigraphy and astrochronology of the Tripoli diatomite formation pre-evaporite Messinian Sicily Italy. Terra Nova 11, 16–22 (1999). (PMID: 10.1046/j.1365-3121.1999.00221.x)
Lantink, M. L., Davies, J. H. F. L., Ovtcharova, M. & Hilgen, F. J. Milankovitch cycles in banded iron formations constrain the Earth-Moon system 246 billion years ago. Proc. Nat. Acad. Sci. 119, e2117146119 (2022). (PMID: 36161904954661710.1073/pnas.2117146119)
Abels, H. A., Kraus, M. J. & Gingerich, P. D. Precession-scale cyclicity in the fluvial lower Eocene Willwood Formation of the Bighorn Basin, Wyoming (USA). Sedimentology 60, 1467–1483 (2013). (PMID: 10.1111/sed.12039)
Vaucher, R. et al. Insolation-paced sea level and sediment flux during the early Pleistocene in Southeast Asia. Sci. Rep. https://doi.org/10.1038/s41598-021-96372-x (2021). (PMID: 10.1038/s41598-021-96372-x344082378373940)
Sinnesael, M., Loi, A., Dabard, M.-P., Vandenbroucke, T. R. A. & Claeys, P. Cyclostratigraphy of the Middle to Upper Ordovician successions of the Armorican Massif (western France) using portable X-ray fluorescence. Geochronology 4, 251–267 (2022). (PMID: 10.5194/gchron-4-251-2022)
Pfeifer, L. S. et al. Rock Magnetic Cyclostratigraphy of Permian Loess in Eastern Equatorial Pangea (Salagou Formation, South-Central France). Front Earth Sci (Lausanne) 8, (2020).
Xu, S. & Chen, J. Obliquity-paced summer monsoon from the Shilou red clay section on the eastern Chinese Loess Plateau. Open Geosciences 16, (2024).
Vahlenkamp, M. et al. Lower to middle Eocene astronomically-tuned Ca/Fe-ratios and bulk stable isotopes of IODP Site 369–U1514. Preprint at https://doi.org/10.1594/PANGAEA.912004 , (2020).
Liebrand, D. et al. Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264. Earth Planet Sci. Lett. 450, 392–405 (2016). (PMID: 10.1016/j.epsl.2016.06.007)
Matsuzaki, K. M. SST determination of IODP Site 346-U1425. in (PANGAEA, 2023). https://doi.org/10.1594/PANGAEA.961000 .
Contributed Indexing:
Keywords: Convex optimization; Milankovitch cycles; Stratigraphic record
Entry Date(s):
Date Created: 20250108 Latest Revision: 20250108
Update Code:
20250114
DOI:
10.1038/s41598-024-82720-0
PMID:
39775130
Database:
MEDLINE

Weitere Informationen

Accurately identifying Milankovitch cycles has been a significant challenge in cyclostratigraphic studies, as it is essential for improving geochronology. This manuscript focuses on developing a method that distinguishes Milankovitch cycles from sedimentary noise to enhance stratigraphic precision. Despite their often-conspicuous magnitude, these periodicities frequently intertwine with noise, posing a challenge for conventional spectral analysis. Therefore, to address this issue, we have developed an algorithm that enhances the resolution of the Milankovitch signal by employing convex optimization in spectral analysis. To evaluate the effectiveness of this new algorithm, we applied it to four distinct types of local stratigraphy where the Milankovitch signal has been confirmed. These include the stratigraphic sections in the middle Miocene molluscan beds of Java and the Mahakam Delta, Pleistocene sediments of Hominin Flores, and the Towuti Lake in Sulawesi Island, Indonesia. Our findings demonstrate the preservation of all targeted signals, with a confidence level surpassing 99%. By setting the significance level to 1%, we can reject the null hypothesis, which assumes noise or the absence of a Milankovitch signal in the stratigraphic data being tested. The absence of deviations from the identified periodicities further strengthens the Milankovitch signal, underscoring the robustness of our algorithm. However, we acknowledge that achieving optimal results still hinges on the accurate selection of the initial parameters z and λ.
(© 2025. The Author(s).)

Competing interests: The authors declare no conflicts of interest in financial or personal relationships that could influence the work in this manuscript.