Treffer: Exploring Natural Language Processing through an Exemplar Using YouTube.
J Nurs Scholarsh. 2024 Mar 26;:. (PMID: 38532639)
Health Qual Life Outcomes. 2015 Dec 21;13:201. (PMID: 26691176)
Stud Health Technol Inform. 2022 Jan 14;289:81-84. (PMID: 35062097)
J Health Soc Behav. 2002 Mar;43(1):1-21. (PMID: 11949193)
Stud Health Technol Inform. 2024 Aug 22;316:305-309. (PMID: 39176734)
Int J Radiat Oncol Biol Phys. 2021 Jul 01;110(3):641-655. (PMID: 33545300)
EGEMS (Wash DC). 2018 Sep 20;6(1):21. (PMID: 30263902)
Artif Intell Med. 2019 Jan;93:13-28. (PMID: 30195983)
PLoS One. 2012;7(8):e43125. (PMID: 22912806)
Health Soc Care Community. 2019 Jan;27(1):260-269. (PMID: 30160058)
J Am Med Inform Assoc. 2022 Apr 13;29(5):805-812. (PMID: 35196369)
J Orthop Surg Res. 2024 May 10;19(1):287. (PMID: 38725085)
Qual Life Res. 2014 Dec;23(10):2809-18. (PMID: 24890827)
J Am Coll Radiol. 2011 Dec;8(12):872-4. (PMID: 22137006)
Int J Popul Data Sci. 2022 Oct 04;7(1):1757. (PMID: 37670734)
Nurs Outlook. 2021 May-Jun;69(3):435-446. (PMID: 33386145)
Health Qual Life Outcomes. 2018 Jun 7;16(1):118. (PMID: 29880002)
JMIR Nurs. 2021 Dec 30;4(4):e31038. (PMID: 34967749)
Eur J Cardiovasc Nurs. 2024 Jun 24;:. (PMID: 38912955)
Data Brief. 2020 Nov 10;33:106517. (PMID: 33294515)
Int J Med Inform. 2023 Feb;170:104934. (PMID: 36508751)
Acta Neurochir Suppl. 2022;134:207-214. (PMID: 34862544)
JMIR Diabetes. 2022 May 16;7(2):e34681. (PMID: 35576579)
PLoS One. 2022 Jul 11;17(7):e0270220. (PMID: 35816481)
Palliat Med. 2023 Feb;37(2):275-290. (PMID: 36495082)
Heart Lung. 2022 Sep-Oct;55:148-154. (PMID: 35597164)
BMC Med Res Methodol. 2021 Jul 31;21(1):158. (PMID: 34332525)
Med Teach. 2024 Sep;46(9):1147-1151. (PMID: 38373212)
Weitere Informationen
There has been a growing emphasis on data across various health-related fields, not just in nursing research, due to the increasing volume of unstructured data in electronic health records (EHRs). Natural Language Processing (NLP) provides a solution by transforming this unstructured data into structured formats, thereby facilitating valuable insights. This methodology paper explores the application of NLP in nursing, using an exemplar case study that analyzes YouTube data to investigate social phenomena among adults living alone. The methodology involves five steps: accessing data through YouTube's API, data cleaning, preprocessing (tokenization, sentence segmentation, linguistic normalization), sentiment analysis using Python, and topic modeling. This study serves as a comprehensive guide for integrating NLP into nursing research, supplemented with digital content demonstrating each step. For successful implementation, nursing researchers must grasp the fundamental concepts and processes of NLP. The potential of NLP in nursing is significant, particularly in utilizing unstructured textual data from nursing documentation and social media. Its benefits include streamlining nursing documentation, enhancing patient communication, and improving data analysis.