Treffer: Communicating Mass Spectrometry Quality Information in mzQC with Python, R, and Java.
Original Publication: New York, NY : Elsevier, c1990-
J Proteome Res. 2023 Feb 3;22(2):625-631. (PMID: 36688502)
Nat Metab. 2022 Sep;4(9):1086-1088. (PMID: 35934691)
J Proteome Res. 2021 Jan 1;20(1):1063-1069. (PMID: 32902283)
Anal Chem. 2017 Apr 18;89(8):4474-4479. (PMID: 28318237)
Mol Cell Proteomics. 2010 Feb;9(2):225-41. (PMID: 19837981)
Nat Biotechnol. 2023 Apr;41(4):447-449. (PMID: 36859716)
Proteomics. 2017 Feb;17(3-4):. (PMID: 27549080)
Mol Cell Proteomics. 2011 Dec;10(12):O111.015446. (PMID: 22052993)
J Proteome Res. 2019 Mar 1;18(3):1418-1425. (PMID: 30638385)
BMC Bioinformatics. 2011 Mar 08;12:70. (PMID: 21385435)
Nucleic Acids Res. 2020 Jan 8;48(D1):D1145-D1152. (PMID: 31686107)
Metabolomics. 2022 Aug 27;18(9):70. (PMID: 36029375)
Mol Cell Proteomics. 2011 Jan;10(1):R110.000133. (PMID: 20716697)
J Proteome Res. 2019 Feb 1;18(2):709-714. (PMID: 30576148)
Anal Chem. 2006 Feb 1;78(3):779-87. (PMID: 16448051)
Mol Cell Proteomics. 2014 Oct;13(10):2765-75. (PMID: 24980485)
J Proteome Res. 2016 Mar 4;15(3):777-87. (PMID: 26653327)
J Proteome Res. 2020 Jan 3;19(1):537-542. (PMID: 31755270)
Bioinformatics. 2023 Oct 3;39(10):. (PMID: 37812234)
J Proteome Res. 2023 Feb 3;22(2):287-301. (PMID: 36626722)
Nature. 2016 May 25;533(7604):452-4. (PMID: 27225100)
Anal Chem. 2012 Jul 17;84(14):5845-50. (PMID: 22697456)
J Proteome Res. 2009 Jul;8(7):3689-92. (PMID: 19344107)
Database (Oxford). 2013 Mar 12;2013:bat009. (PMID: 23482073)
Proteomics. 2014 Jan;14(1):74-7. (PMID: 24420968)
J Proteome Res. 2008 Jul;7(7):3022-7. (PMID: 18505281)
J Lipid Res. 2021;62:100138. (PMID: 34662536)
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. (PMID: 25348405)
J Proteome Res. 2012 Nov 2;11(11):5540-7. (PMID: 23088386)
PLoS One. 2018 Jan 11;13(1):e0189209. (PMID: 29324744)
Proteomics. 2010 Apr;10(7):1332-5. (PMID: 20127693)
Proteomics. 2024 Apr;24(8):e2300084. (PMID: 38380501)
Mass Spectrom Rev. 2018 Sep;37(5):697-711. (PMID: 28802010)
Weitere Informationen
Mass spectrometry is a powerful technique for analyzing molecules in complex biological samples. However, inter- and intralaboratory variability and bias can affect the data due to various factors, including sample handling and preparation, instrument calibration and performance, and data acquisition and processing. To address this issue, the Quality Control (QC) working group of the Human Proteome Organization's Proteomics Standards Initiative has established the standard mzQC file format for reporting and exchanging information relating to data quality. mzQC is based on the JavaScript Object Notation (JSON) format and provides a lightweight yet versatile file format that can be easily implemented in software. Here, we present open-source software libraries to process mzQC data in three programming languages: Python, using pymzqc; R, using rmzqc; and Java, using jmzqc. The libraries follow a common data model and provide shared functionalities, including the (de)serialization and validation of mzQC files. We demonstrate use of the software libraries in a workflow for extracting, analyzing, and visualizing QC metrics from different sources. Additionally, we show how these libraries can be integrated with each other, with existing software tools, and in automated workflows for the QC of mass spectrometry data. All software libraries are available as open source under the MS-Quality-Hub organization on GitHub (https://github.com/MS-Quality-Hub).