Treffer: The importance of graph databases and graph learning for clinical applications.

Title:
The importance of graph databases and graph learning for clinical applications.
Authors:
Walke D; Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany.; Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany., Micheel D; Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany., Schallert K; Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany., Muth T; Section eScience (S.3), Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, Berlin 12205, Germany., Broneske D; Infrastructure and Methods, German Center for Higher Education Research and Science Studies (DZHW), Lange Laube 12, Hannover 30159, Germany., Saake G; Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, Magdeburg 39106, Germany., Heyer R; Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany.; Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
Source:
Database : the journal of biological databases and curation [Database (Oxford)] 2023 Jul 10; Vol. 2023.
Publication Type:
Review; Journal Article; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Oxford Journals Country of Publication: England NLM ID: 101517697 Publication Model: Print Cited Medium: Internet ISSN: 1758-0463 (Electronic) Linking ISSN: 17580463 NLM ISO Abbreviation: Database (Oxford) Subsets: MEDLINE
Imprint Name(s):
Original Publication: Oxford : Oxford Journals, 2009-
Comments:
Erratum in: Database (Oxford). 2024 Jan 20;2024:baae006. doi: 10.1093/database/baae006. (PMID: 38245003)
References:
IEEE Trans Med Imaging. 2022 Apr;41(4):757-770. (PMID: 32881682)
J Cheminform. 2021 Feb 17;13(1):12. (PMID: 33597034)
Pac Symp Biocomput. 2021;26:285-296. (PMID: 33691025)
Am J Cardiol. 2003 Jun 19;91(12A):30H-37H. (PMID: 12818733)
Med Image Anal. 2022 Jan;75:102264. (PMID: 34781160)
KDD. 2016 Aug;2016:855-864. (PMID: 27853626)
Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
Clin Transl Sci. 2022 Aug;15(8):1848-1855. (PMID: 36125173)
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:646-653. (PMID: 32477687)
Nature. 1998 Jun 4;393(6684):440-2. (PMID: 9623998)
Eur J Intern Med. 2008 Oct;19(6):413-20. (PMID: 18848174)
Neurocomputing. 2021 Sep 10;452:592-605. (PMID: 33390662)
Bioinformatics. 2021 Jun 9;37(9):1332-1334. (PMID: 32976572)
Drug Discov Today Technol. 2020 Dec;37:1-12. (PMID: 34895648)
Bioinformatics. 2020 Feb 15;36(4):1241-1251. (PMID: 31584634)
Sci Rep. 2017 Jul 20;7(1):5994. (PMID: 28729710)
CEUR Workshop Proc. 2018 Oct;2317:. (PMID: 34690624)
Med Image Anal. 2021 Dec;74:102233. (PMID: 34655865)
Biomed Res Int. 2015;2015:370194. (PMID: 26229957)
Bioinformatics. 2013 Feb 1;29(3):355-64. (PMID: 23235927)
IEEE Trans Pattern Anal Mach Intell. 2022 Feb;44(2):864-876. (PMID: 33006927)
Biology (Basel). 2021 Dec 27;11(1):. (PMID: 35053031)
Artif Intell Med. 2021 Jul;117:102097. (PMID: 34127236)
BMC Bioinformatics. 2017 Jan 17;18(1):39. (PMID: 28095781)
J Chem Inf Model. 2022 May 9;62(9):2093-2100. (PMID: 34757744)
Med Image Anal. 2018 Aug;48:117-130. (PMID: 29890408)
IEEE Trans Neural Netw Learn Syst. 2023 Mar 16;PP:. (PMID: 37030729)
Biomed Res Int. 2017;2017:2858423. (PMID: 28299322)
J Neural Eng. 2020 Jun 22;17(3):035004. (PMID: 32375134)
Brief Bioinform. 2022 Jan 17;23(1):. (PMID: 34471921)
Sensors (Basel). 2021 Jul 12;21(14):. (PMID: 34300498)
Comput Med Imaging Graph. 2022 Jan;95:102027. (PMID: 34959100)
Nat Methods. 2019 Sep;16(9):843-852. (PMID: 31471613)
PLoS One. 2019 Aug 1;14(8):e0219796. (PMID: 31369568)
J Neurosci Methods. 2011 Jul 15;199(1):129-39. (PMID: 21570425)
Nature. 2021 Jun;594(7862):265-270. (PMID: 34040261)
Patterns (N Y). 2021 Jan 8;2(1):100155. (PMID: 33196056)
Bioinformatics. 2018 Jul 1;34(13):i457-i466. (PMID: 29949996)
Nat Rev Genet. 2017 Sep;18(9):551-562. (PMID: 28607512)
Science. 2000 Dec 22;290(5500):2323-6. (PMID: 11125150)
PLoS Comput Biol. 2008 Jun 27;4(6):e1000100. (PMID: 18584043)
Big Data. 2020 Oct;8(5):379-390. (PMID: 32783631)
Med Image Comput Comput Assist Interv. 2019 Oct;11768:485-493. (PMID: 32984866)
Entry Date(s):
Date Created: 20230710 Date Completed: 20230712 Latest Revision: 20240120
Update Code:
20250114
PubMed Central ID:
PMC10332447
DOI:
10.1093/database/baad045
PMID:
37428679
Database:
MEDLINE

Weitere Informationen

The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph learning algorithms. Graphical abstract.
(© The Author(s) 2023. Published by Oxford University Press.)