Treffer: A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells.
J Appl Physiol (1985). 2004 May;96(5):1600-5. (PMID: 14707148)
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10259-10264. (PMID: 16793927)
Biophys J. 1998 Oct;75(4):2038-49. (PMID: 9746546)
Nature. 2010 Jan 28;463(7280):485-92. (PMID: 20110992)
J R Soc Interface. 2004 Nov 22;1(1):91-7. (PMID: 16849155)
J Orthop Res. 1999 Nov;17(6):880-90. (PMID: 10632455)
Biophys J. 2005 Apr;88(4):2994-3007. (PMID: 15665124)
Acta Biomater. 2007 Jul;3(4):413-38. (PMID: 17540628)
Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7765-70. (PMID: 11438729)
Nat Mater. 2013 Mar;12(3):253-61. (PMID: 23291707)
Phys Rev Lett. 2001 Oct 1;87(14):148102. (PMID: 11580676)
Phys Rev Lett. 2006 Mar 3;96(8):088102. (PMID: 16606229)
Biophys J. 2008 Apr 1;94(7):2906-13. (PMID: 18178644)
Phys Rev Lett. 2006 Oct 20;97(16):168101. (PMID: 17155438)
Nature. 2005 May 19;435(7040):365-9. (PMID: 15902261)
Ann Biomed Eng. 2004 Apr;32(4):520-30. (PMID: 15117025)
J Theor Biol. 1999 Feb 7;196(3):309-25. (PMID: 10049624)
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15192-7. (PMID: 19667200)
Phys Rev Lett. 1995 Dec 11;75(24):4425-4428. (PMID: 10059905)
Phys Rev Lett. 2004 Oct 29;93(18):188102. (PMID: 15525211)
J Cell Biol. 1993 Feb;120(4):923-34. (PMID: 8432732)
Cell. 2011 Feb 4;144(3):414-26. (PMID: 21295701)
Ann Biomed Eng. 2003 Nov;31(10):1263-78. (PMID: 14649500)
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021911. (PMID: 17025476)
Nature. 2005 May 12;435(7039):191-4. (PMID: 15889088)
Biophys J. 2013 Oct 1;105(7):1562-8. (PMID: 24094397)
Nat Phys. 2019 Aug;15(8):839-847. (PMID: 33569083)
Am J Clin Nutr. 2007 May;85(5):1185-96. (PMID: 17490952)
Eur Biophys J. 1999;28(3):222-34. (PMID: 10192936)
Nature. 2018 Nov;563(7730):203-208. (PMID: 30401836)
Biophys J. 2006 May 15;90(10):3796-805. (PMID: 16461394)
Nat Phys. 2017 Aug;13(8):771-775. (PMID: 28781604)
J Cell Sci. 2009 Sep 15;122(Pt 18):3233-41. (PMID: 19690051)
Cell. 2014 Aug 14;158(4):822-832. (PMID: 25126787)
Nat Cell Biol. 2003 Sep;5(9):803-11. (PMID: 12942086)
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14448-14455. (PMID: 31266897)
Biophys J. 2005 Mar;88(3):2224-33. (PMID: 15596508)
J Cell Sci. 1993 Mar;104 ( Pt 3):613-27. (PMID: 8314865)
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 1):041914. (PMID: 14682980)
J Appl Physiol (1985). 1996 Jan;80(1):149-57. (PMID: 8847296)
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17175-17180. (PMID: 31409716)
Biophys J. 2013 Oct 15;105(8):1767-77. (PMID: 24138852)
Weitere Informationen
Living cells are a complex soft material with fascinating mechanical properties. A striking feature is that, regardless of their types or states, cells exhibit a universal power-law rheological behavior which to this date still has not been captured by a single theoretical model. Here, we propose a cellular structural model that accounts for the essential mechanical responses of cell membrane, cytoplasm and cytoskeleton. We demonstrate that this model can naturally reproduce the universal power-law characteristics of cell rheology, as well as how its power-law exponent is related to cellular stiffness. More importantly, the power-law exponent can be quantitatively tuned in the range of 0.1 ~ 0.5, as found in most types of cells, by varying the stiffness or architecture of the cytoskeleton. Based on the structural characteristics, we further develop a self-similar hierarchical model that can spontaneously capture the power-law characteristics of creep compliance over time and complex modulus over frequency. The present model suggests that mechanical responses of cells may depend primarily on their generic architectural mechanism, rather than specific molecular properties.
(© 2021. The Author(s).)