Treffer: How to Find Aquifer Statistics Utilizing Pumping Tests? Two Field Studies Using welltestpy.

Title:
How to Find Aquifer Statistics Utilizing Pumping Tests? Two Field Studies Using welltestpy.
Authors:
Müller S; Helmholtz Centre for Environmental Research (UFZ), 04318, Leipzig, Germany.; Institute of Environmental Science and Geography, University of Potsdam, 14476, Potsdam, Germany., Leven C; Department of Geoscience, University of Tübingen, 72074, Tübingen, Germany., Dietrich P; Helmholtz Centre for Environmental Research (UFZ), 04318, Leipzig, Germany.; Department of Geoscience, University of Tübingen, 72074, Tübingen, Germany., Attinger S; Helmholtz Centre for Environmental Research (UFZ), 04318, Leipzig, Germany.; Institute of Environmental Science and Geography, University of Potsdam, 14476, Potsdam, Germany., Zech A; Helmholtz Centre for Environmental Research (UFZ), 04318, Leipzig, Germany.; Department of Earth Science, Utrecht University, 3584, CS, Utrecht, The Netherlands.
Source:
Ground water [Ground Water] 2022 Jan; Vol. 60 (1), pp. 137-144. Date of Electronic Publication: 2021 Jul 14.
Publication Type:
Journal Article; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Blackwell Publishing Country of Publication: United States NLM ID: 9882886 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1745-6584 (Electronic) Linking ISSN: 0017467X NLM ISO Abbreviation: Ground Water Subsets: MEDLINE
Imprint Name(s):
Publication: 2005- : Malden, MA : Blackwell Publishing
Original Publication: Worthington, Ohio : Water Well Journal Pub. Co.,
References:
Bear, J. 1972. Dynamics of Fluids in Porous Media. New York: Elsevier.
Dagan, G. 1989. Flow and Transport in Porous Formations. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-75015-1.
Duan, Q., S. Sorooshian, and V. Gupta. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28, no. 4: 1015-1031. https://doi.org/10.1029/91WR02985.
Fiori, A., V. Cvetkovic, G. Dagan, S. Attinger, A. Bellin, P. Dietrich, A. Zech, and G. Teutsch. 2016. Debates - Stochastic subsurface hydrology from theory to practice: The relevance of stochastic subsurface hydrology to practical problems of contaminant transport and remediation. What is characterization and stochastic theory good for? Water Resources Research 52, no. 12: 9228-9234. https://doi.org/10.1002/2015WR017525.
Gelhar, L.W. 1993. Stochastic Subsurface Hydrology. New York: Prentice Hall, Englewood Cliffs.
Houska, T., P. Kraft, A. Chamorro-Chavez, and L. Breuer. 2015. SPOTting model parameters using a ready-made python package. PLoS ONE 10, no. 12: e0145180. https://doi.org/10.1371/journal.pone.0145180.
Indelman, P., and B. Abramovich. 1994. Nonlocal properties of nonuniform averaged flows in heterogeneous media. Water Resources Research 30, no. 12: 3385-3393. https://doi.org/10.1029/94WR01782.
Lessoff, S.C., U. Schneidewind, C. Leven, P. Blum, P. Dietrich, and G. Dagan. 2010. Spatial characterization of the hydraulic conductivity using direct-push injection logging. Water Resources Research 46, no. 12: W12502. https://doi.org/10.1029/2009WR008949.
Leven, C. 2020. Pumping Tests in Wells B1-B5 at the Hydrogeological Research Site Lauswiesen. Tübingen: Eberhard Karls Universität Tübingen http://hdl.handle.net/10900.1/bfb0b0f7-7065-4a24-8a91-92ad8aa8fc40.
Leven, C., and P. Dietrich. 2006. What information can we get from pumping tests? Comparing pumping test configurations using sensitivity coefficients. Journal of Hydrology 319: 199-215. https://doi.org/10.1016/j.jhydrol.2005.06.030.
Müller, S. 2021. GeoStat-Framework/welltestpy: v1.0.3. Zenodo. https://doi.org/10.5281/zenodo.4549297 (accessed February 19, 2021).
Müller, S. 2020. GeoStat-Framework/AnaFlow v1.0.1. Zenodo. https://doi.org/10.5281/zenodo.3738268 (accessed May 31, 2020).
Müller, S., and A. Zech. 2021. GeoStat-Examples/welltestpy-field-site-analysis: v1.1.0. Zenodo. https://doi.org/10.5281/zenodo.4724118 (accessed April 27, 2021).
Neuman, S.P., A. Guadagnini, and M. Riva. 2004. Type-curve estimation of statistical heterogeneity. Water Resources Research 40: W04201. https://doi.org/10.1029/2003WR002405.
Rajaram, H. 2016. Debates-Stochastic subsurface hydrology from theory to practice: Introduction. Water Resources Research 52, no. 12: 9215-9217. https://doi.org/10.1002/2016WR020066.
Riva, M., L. Guadagnini, A. Guadagnini, T. Ptak, and E. Martac. 2006. Probabilistic study of well capture zones distribution at the Lauswiesen field site. Journal of Contaminant Hydrology 88, no. 1: 92-118. https://doi.org/10.1016/j.jconhyd.2006.06.005.
Saltelli, A., S. Tarantola, and K.P.-S. Chan. 1999. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41, no. 1: 39-56. https://doi.org/10.1080/00401706.1999.10485594.
Sánchez-Vila, X., A. Guadagnini, and J. Carrera. 2006. Representative hydraulic conductivities in saturated groundwater flow. Reviews of Geophysics 44: RG3002. https://doi.org/10.1029/2005RG000169.
Schad, H. 1997. Variability of hydraulic parameters in non-uniform porous media: Experiments and stochastic modeling at different scales. PhD thesis, University Tübingen.
Schad, H., and G. Teutsch. 1994. Effects of the investigation scale on pumping test results in heterogeneous porous aquifers. Journal of Hydrology 159: 61-77. https://doi.org/10.1016/0022-1694(94)90249-6.
Zech, A., S. Müller, J. Mai, F. Heße, and S. Attinger. 2016. Extending Theis' solution: Using transient pumping tests to estimate parameters of aquifer heterogeneity. Water Resources Research 52, no. 8: 6156-6170. https://doi.org/10.1002/2015WR018509.
Zech, A., and S. Attinger. 2015. Technical note: Analytical solution for the mean drawdown of steady state pumping tests in two-dimensional isotropic heterogeneous aquifers. Hydrology and Earth System Sciences 12: 6921-6944. https://doi.org/10.5194/hessd-12-6921-2015.
Zech, A., C.L. Schneider, and S. Attinger. 2012. The extended Thiem's solution-Including the impact of heterogeneity. Water Resources Research 48, no. 10: W10535. https://doi.org/10.1029/2012WR011852.
Entry Date(s):
Date Created: 20210707 Date Completed: 20220331 Latest Revision: 20220401
Update Code:
20250114
DOI:
10.1111/gwat.13121
PMID:
34231221
Database:
MEDLINE

Weitere Informationen

We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy. The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi-analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log-transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type-curve analysis and determine their sensitivity. This procedure, implemented in welltestpy, is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open-source software package welltestpy.
(© 2021 The Authors. Groundwater published by Wiley Periodicals LLC on behalf of National Ground Water Association.)