Treffer: MLLPA: A Machine Learning-assisted Python module to study phase-specific events in lipid membranes.
L. A. B. Ole, G. Mouritsen, Life-As a Matter of Fat, Springer-Verlag GmbH, Berlin, Germany 2015.
S. Mabrey, J. M. Sturtevant, PNAS 1976, 73, 3862.
T. Heimburg, Thermal Biophysics of Membranes, Tutorials in Biophysics, Wiley-VCH, Weinheim, Germany 2007, p. 339.
D. Marsh, Handbook of Lipid Bilayers, 2nd ed., CRC Press, Boca Raton, FL 2013.
J. F. Nagle, J. Chem. Phys. 1973, 58, 252.
D. Marsh, J. Membrane Biol. 1974, 18, 145.
S. T. Marcelja, Biochim. Biophys. Acta, Biomembr. 1974, 367, 165.
M. J. Zuckermann, O. G. Mouritsen, Eur. Biophys. J. 1987, 15, 77. https://doi.org/10.1007/BF00257501.
H. I. Petrache, K. Tu, J. F. Nagle, Biophys. J. 1999, 76, 2479.
H. I. Petrache, S. W. Dodd, M. F. Brown, Biophys. J. 2000, 79, 3172.
E. Cubuk, S. Schoenholz, J. Rieser, B. Malone, J. Rottler, D. Durian, E. Kaxiras, A. Liu, Phys. Rev. Lett. 2015, 114, 108001.
J. Carrasquilla, R. G. Melko, Nat. Phys. 2017, 13, 413.
T. C. Le, N. Tran, ACS Appl. Nano Mater. 2019, 2, 1637.
C. A. Lopez, V. V. Vesselinov, S. Gnanakaran, B. S. Alexandrov, J. Chem. Theory Comput. 2019, 15, 6343.
S. S. Iyer, A. Negi, A. Srivastava, J. Chem. Theory Comput. 2020, 16, 2736.
M. Aghaaminiha, S. A. Ghanadian, E. Ahmadi, A. M. Farnoud, Biomembranes 1862, 2020, 183350.
T. E. de Oliveira, F. Leonforte, L. Nicolas-Morgantini, A.-L. Fameau, B. Querleux, F. Thalmann, C. M. Marques, Phys. Rev. Res. 2020, 2, 013075.
V. Walter, C. Ruscher, O. Benzerara, C. M. Marques, F. Thalmann, Phys. Chem. Chem. Phys. 2020, 22, 19147.
D. Sánchez-Gutiérrez, M. Tozluoglu, J. D. Barry, A. Pascual, Y. Mao, L. M. Escudero, Embo J. 2016, 35, 77.
G. Voronoi, J. Reine Angew. Math. 1908, 133, 97.
G. Voronoi, J. Reine Angew. Math. 1908, 134, 198.
W. J. Allen, J. A. Lemkul, D. R. Bevan, J. Comput. Chem. 2008, 30, 1952.
S. Buchoux, Bioinformatics 2017, 33, 133.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 2011, 12, 2825.
C. H. Rycroft, Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 041111.
W. Smith, Tess, https://github.com/wackywendell/tess. (accessed 3 March 2021).
N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, O. Beckstein, J. Comput. Chem. 2011, 32, 2319.
R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, J. Domanski, D. L. Dotson, S. Buchoux, I. M. Kenney, Oliver Beckstein, presented at Proc. 15th Python in Science Conference, Austin, Texas USA, 2016, pp. 98-105.
GitHub repo, github.com/vivien-walter/mllpa. (accessed 3 March 2021).
Zenodo repo, https://doi.org/10.5281/zenodo.4300706. (accessed 3 March 2021).
MDAnalysis - Trajectory Readers, https://docs.mdanalysis.org/stable/documentation_pages/topology/init.html. (accessed 3 March 2021).
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Nature 2020, 585, 357.
S. Jo, T. Kim, V. Iyer, W. Im, J. Comput. Chem. 2008, 29, 1859.
B. Brooks, C. L. Brooks III., A. D. Mackerell Jr.., L. Nilsson, R. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
J. Lee, X. Cheng, J. Swails, M. Yeom, P. Eastman, J. Lemkul, S. Wei, J. Buckner, J. Jeong, Y. Qi, S. Jo, V. S. Pande, D. A. Case, C. L. Brooks III., A. D. MacKerell Jr.., J. B. Klauda, W. Im, J. Chem. Theory Comput. 2015, 12, 405.
E. Wu, X. Cheng, S. Jo, H. Rui, K. Song, E. Dávila-Contreras, Y. Qi, J. Lee, V. Monje-Galvan, R. Venable, J. B. Klauda, W. Im, J. Comput. Chem. 2014, 35, 1997.
S. Jo, J. B. Lim, J. B. Klauda, W. Im, Biophys. J. 2009, 97, 50.
H. J. C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 1995, 91, 43.
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hessa, E. Lindahl, SoftwareX 2015, 1-2, 19.
R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig, A. D. MacKerell, J. Chem. Theory Comput. 2012, 8, 3257.
S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries, J. Phys. Chem. B 2007, 111, 7812.
Y. Qi, H. I. Ingólfsson, X. Cheng, J. Lee, S. J. Marrink, W. Im, J. Chem. Theory Comput. 2015, 11, 4486.
P. Hsu, B. M. H. Bruininks, D. Jefferies, P. C. T. de Souza, J. Lee, D. S. Patel, S. J. Marrink, Y. Qi, S. Khalid, W. Im, J. Comput. Chem. 2017, 38, 2354.
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 2009, 18, 015012.
E. J. Shimshick, H. M. McConnell, Biochemistry 1973, 12, 2351.
J. H. Ipsen, G. Karlström, O. G. Mouritsen, H. Wennerström, M. J. Zuckermann, Biochim. Biophys. Acta, Biomembr. 1987, 905, 162.
S. L. Veatch, O. Soubias, S. L. Keller, K. Gawrisch, PNAS 2007, 104, 17650.
D. Stelter, T. Keyes, Soft Matter 2019, 15, 8102.
M. D. Franova, I. Vattulainen, O. Ollila, Biochim. Biophys. Acta, Biomembr. 2014, 1838, 1406.
J. H. Crowe, F. A. Hoekstra, K. H. N. Nguyen, L. M. Crowe, Biochim. Biophys. Acta, Biomembr. 1996, 1280, 187.
G. Rossi, L. Monticelli, J. Phys.: Condens. Matter 2014, 26, 503101.
S. Marcelja, Biochim. Biophys. Acta, Biomembr. 1976, 455, 1.
T. Gil, J. H. Ipsen, O. G. Mouritsen, M. C. Sabra, M. M. Sperotto, M. J. Zuckermann, Biochim. Biophys. Acta, Biomembr. 1998, 1376, 245.
Weitere Informationen
Machine Learning-assisted Lipid Phase Analysis (MLLPA) is a new Python 3 module developed to analyze phase domains in a lipid membrane based on lipid molecular states. Reading standard simulation coordinate and trajectory files, the software first analyze the phase composition of the lipid membrane by using machine learning tools to label each individual molecules with respect to their state, and then decompose the simulation box using Voronoi tessellations to analyze the local environment of all the molecules of interest. MLLPA is versatile as it can read from multiple format (e.g., GROMACS, LAMMPS) and from either all-atom (e.g., CHARMM36) or coarse-grain models (e.g., Martini). It can also analyze multiple geometries of membranes (e.g., bilayers, vesicles). Finally, the software allows for training with more than two phases, allowing for multiple phase coexistence analysis.
(© 2021 Wiley Periodicals LLC.)