Treffer: Analyzing microtomography data with Python and the scikit-image library.

Title:
Analyzing microtomography data with Python and the scikit-image library.
Authors:
Gouillart E; Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, 93303 Aubervilliers, France., Nunez-Iglesias J; Victorian Life Sciences Computation Initiative, University of Melbourne, Carlton, VIC Australia., van der Walt S; Division of Applied Mathematics, Stellenbosch University, Stellenbosch, South Africa.
Source:
Advanced structural and chemical imaging [Adv Struct Chem Imaging] 2017; Vol. 2 (1), pp. 18. Date of Electronic Publication: 2016 Dec 07.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: SpringerOpen Country of Publication: Germany NLM ID: 101687126 Publication Model: Print-Electronic Cited Medium: Print ISSN: 2198-0926 (Print) Linking ISSN: 21980926 NLM ISO Abbreviation: Adv Struct Chem Imaging Subsets: PubMed not MEDLINE
Imprint Name(s):
Original Publication: Heidelberg : SpringerOpen, [2015]-[2020]
References:
Int J Comput Assist Radiol Surg. 2016 Feb;11(2):281-96. (PMID: 26259554)
IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83. (PMID: 17063682)
J Synchrotron Radiat. 2014 Sep;21(Pt 5):1188-93. (PMID: 25178011)
Genome Biol. 2006;7(10):R100. (PMID: 17076895)
PeerJ. 2014 Jun 19;2:e453. (PMID: 25024921)
Comput Biol Med. 2016 Feb 1;69:203-12. (PMID: 26773941)
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29. (PMID: 26153368)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
Biotechniques. 2007 Jan;42(1):71-5. (PMID: 17269487)
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. (PMID: 20124702)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
J Synchrotron Radiat. 2014 Jul;21(Pt 4):815-8. (PMID: 24971980)
IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2274-82. (PMID: 22641706)
Inf Process Med Imaging. 2015 ;24:588-99. (PMID: 26221705)
J Appl Crystallogr. 2015 Mar 24;48(Pt 2):510-519. (PMID: 25844080)
Contributed Indexing:
Keywords: 3D image; Image processing library; Python; Scikit-image
Entry Date(s):
Date Created: 20171117 Latest Revision: 20200929
Update Code:
20250114
PubMed Central ID:
PMC5660892
DOI:
10.1186/s40679-016-0031-0
PMID:
29142808
Database:
MEDLINE

Weitere Informationen

The exploration and processing of images is a vital aspect of the scientific workflows of many X-ray imaging modalities. Users require tools that combine interactivity, versatility, and performance. scikit-image is an open-source image processing toolkit for the Python language that supports a large variety of file formats and is compatible with 2D and 3D images. The toolkit exposes a simple programming interface, with thematic modules grouping functions according to their purpose, such as image restoration, segmentation, and measurements. scikit-image users benefit from a rich scientific Python ecosystem that contains many powerful libraries for tasks such as visualization or machine learning. scikit-image combines a gentle learning curve, versatile image processing capabilities, and the scalable performance required for the high-throughput analysis of X-ray imaging data.