Treffer: Analyzing microtomography data with Python and the scikit-image library.
IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83. (PMID: 17063682)
J Synchrotron Radiat. 2014 Sep;21(Pt 5):1188-93. (PMID: 25178011)
Genome Biol. 2006;7(10):R100. (PMID: 17076895)
PeerJ. 2014 Jun 19;2:e453. (PMID: 25024921)
Comput Biol Med. 2016 Feb 1;69:203-12. (PMID: 26773941)
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29. (PMID: 26153368)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
Biotechniques. 2007 Jan;42(1):71-5. (PMID: 17269487)
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. (PMID: 20124702)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
J Synchrotron Radiat. 2014 Jul;21(Pt 4):815-8. (PMID: 24971980)
IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2274-82. (PMID: 22641706)
Inf Process Med Imaging. 2015 ;24:588-99. (PMID: 26221705)
J Appl Crystallogr. 2015 Mar 24;48(Pt 2):510-519. (PMID: 25844080)
Weitere Informationen
The exploration and processing of images is a vital aspect of the scientific workflows of many X-ray imaging modalities. Users require tools that combine interactivity, versatility, and performance. scikit-image is an open-source image processing toolkit for the Python language that supports a large variety of file formats and is compatible with 2D and 3D images. The toolkit exposes a simple programming interface, with thematic modules grouping functions according to their purpose, such as image restoration, segmentation, and measurements. scikit-image users benefit from a rich scientific Python ecosystem that contains many powerful libraries for tasks such as visualization or machine learning. scikit-image combines a gentle learning curve, versatile image processing capabilities, and the scalable performance required for the high-throughput analysis of X-ray imaging data.