Treffer: The characteristic direction: a geometrical approach to identify differentially expressed genes.
Bioinformatics. 2010 Oct 1;26(19):2438-44. (PMID: 20709693)
N Engl J Med. 1986 Dec 25;315(26):1650-9. (PMID: 3537791)
Nat Rev Genet. 2006 Jan;7(1):55-65. (PMID: 16369572)
Nat Genet. 2003 Jul;34(3):267-73. (PMID: 12808457)
BMC Bioinformatics. 2013 Mar 09;14:91. (PMID: 23497356)
Bioinformatics. 2001 Jun;17(6):509-19. (PMID: 11395427)
Math Biosci. 2002 Mar;176(1):59-69. (PMID: 11867084)
Brief Bioinform. 2013 Nov;14(6):671-83. (PMID: 22988256)
Cell. 2011 Mar 4;144(5):646-74. (PMID: 21376230)
BMC Bioinformatics. 2010 Feb 18;11:94. (PMID: 20167110)
BMC Bioinformatics. 2013 Apr 15;14:128. (PMID: 23586463)
Math Biosci. 2002 Mar;176(1):71-98. (PMID: 11867085)
Genomics. 2002 Feb;79(2):266-70. (PMID: 11829497)
Bioinformatics. 2008 Jan 15;24(2):192-201. (PMID: 18042553)
Nat Genet. 2000 May;25(1):25-9. (PMID: 10802651)
Neurochem Res. 2004 Jun;29(6):1213-22. (PMID: 15176478)
Genome Biol. 2010;11(3):R25. (PMID: 20196867)
Biostatistics. 2005 Jan;6(1):59-75. (PMID: 15618528)
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72. (PMID: 16381955)
Genome Biol. 2010;11(10):R106. (PMID: 20979621)
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. (PMID: 16199517)
BMC Bioinformatics. 2004 Sep 06;5:124. (PMID: 15350198)
Biostatistics. 2007 Jan;8(1):86-100. (PMID: 16603682)
G3 (Bethesda). 2013 Dec 09;3(12):2173-85. (PMID: 24142927)
Cell. 2000 Jan 7;100(1):57-70. (PMID: 10647931)
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21. (PMID: 11309499)
Bioinformatics. 2005 Jul 15;21(14):3105-13. (PMID: 15905280)
J Gerontol A Biol Sci Med Sci. 2001 Feb;56(2):B52-7. (PMID: 11213267)
N Engl J Med. 2007 Jan 18;356(3):217-26. (PMID: 17229949)
Stat Appl Genet Mol Biol. 2004;3:Article3. (PMID: 16646809)
Bioinformatics. 2007 Dec 1;23(23):3251-3. (PMID: 17644558)
J Comput Biol. 2002;9(2):401-11. (PMID: 12015889)
Science. 2004 Oct 22;306(5696):636-40. (PMID: 15499007)
BMC Biol. 2003 Nov 28;1:1. (PMID: 14641937)
Weitere Informationen
Background: Identifying differentially expressed genes (DEG) is a fundamental step in studies that perform genome wide expression profiling. Typically, DEG are identified by univariate approaches such as Significance Analysis of Microarrays (SAM) or Linear Models for Microarray Data (LIMMA) for processing cDNA microarrays, and differential gene expression analysis based on the negative binomial distribution (DESeq) or Empirical analysis of Digital Gene Expression data in R (edgeR) for RNA-seq profiling.
Results: Here we present a new geometrical multivariate approach to identify DEG called the Characteristic Direction. We demonstrate that the Characteristic Direction method is significantly more sensitive than existing methods for identifying DEG in the context of transcription factor (TF) and drug perturbation responses over a large number of microarray experiments. We also benchmarked the Characteristic Direction method using synthetic data, as well as RNA-Seq data. A large collection of microarray expression data from TF perturbations (73 experiments) and drug perturbations (130 experiments) extracted from the Gene Expression Omnibus (GEO), as well as an RNA-Seq study that profiled genome-wide gene expression and STAT3 DNA binding in two subtypes of diffuse large B-cell Lymphoma, were used for benchmarking the method using real data. ChIP-Seq data identifying DNA binding sites of the perturbed TFs, as well as known drug targets of the perturbing drugs, were used as prior knowledge silver-standard for validation. In all cases the Characteristic Direction DEG calling method outperformed other methods. We find that when drugs are applied to cells in various contexts, the proteins that interact with the drug-targets are differentially expressed and more of the corresponding genes are discovered by the Characteristic Direction method. In addition, we show that the Characteristic Direction conceptualization can be used to perform improved gene set enrichment analyses when compared with the gene-set enrichment analysis (GSEA) and the hypergeometric test.
Conclusions: The application of the Characteristic Direction method may shed new light on relevant biological mechanisms that would have remained undiscovered by the current state-of-the-art DEG methods. The method is freely accessible via various open source code implementations using four popular programming languages: R, Python, MATLAB and Mathematica, all available at: http://www.maayanlab.net/CD.